mirror of
https://github.com/ashishpatel26/Amazing-Feature-Engineering.git
synced 2022-05-07 18:26:02 +03:00
1110 lines
31 KiB
Plaintext
1110 lines
31 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"import seaborn as sns\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import os\n",
|
|
"plt.style.use('seaborn-colorblind')\n",
|
|
"%matplotlib inline\n",
|
|
"from feature_cleaning import missing_data as ms\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Load dataset"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"(891, 6)\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>Survived</th>\n",
|
|
" <th>Pclass</th>\n",
|
|
" <th>Sex</th>\n",
|
|
" <th>Age</th>\n",
|
|
" <th>SibSp</th>\n",
|
|
" <th>Fare</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>22.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>7.2500</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>38.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>71.2833</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>26.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>7.9250</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>53.1000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.0500</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>5</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.4583</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>6</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>54.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>51.8625</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>7</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>21.0750</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" Survived Pclass Sex Age SibSp Fare\n",
|
|
"0 0 3 male 22.0 1 7.2500\n",
|
|
"1 1 1 female 38.0 1 71.2833\n",
|
|
"2 1 3 female 26.0 0 7.9250\n",
|
|
"3 1 1 female 35.0 1 53.1000\n",
|
|
"4 0 3 male 35.0 0 8.0500\n",
|
|
"5 0 3 male NaN 0 8.4583\n",
|
|
"6 0 1 male 54.0 0 51.8625\n",
|
|
"7 0 3 male 2.0 3 21.0750"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"use_cols = [\n",
|
|
" 'Pclass', 'Sex', 'Age', 'Fare', 'SibSp',\n",
|
|
" 'Survived'\n",
|
|
"]\n",
|
|
"\n",
|
|
"data = pd.read_csv('./data/titanic.csv', usecols=use_cols)\n",
|
|
"print(data.shape)\n",
|
|
"data.head(8)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Missing value checking\n",
|
|
"check the total number & percentage of missing values\n",
|
|
"per variable of a pandas Dataframe"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"result saved at ./output/ missing.csv\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>total missing</th>\n",
|
|
" <th>proportion</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>Survived</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Pclass</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Sex</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Age</th>\n",
|
|
" <td>177</td>\n",
|
|
" <td>0.198653</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>SibSp</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Fare</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" total missing proportion\n",
|
|
"Survived 0 0.000000\n",
|
|
"Pclass 0 0.000000\n",
|
|
"Sex 0 0.000000\n",
|
|
"Age 177 0.198653\n",
|
|
"SibSp 0 0.000000\n",
|
|
"Fare 0 0.000000"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# only variable Age has missing values, totally 177 cases\n",
|
|
"# result is saved at the output dir (if given)\n",
|
|
"\n",
|
|
"ms.check_missing(data=data,output_path=r'./output/')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"source": [
|
|
"## Listwise deletion \n",
|
|
"excluding all cases (listwise) that have missing values"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"(714, 6)"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# 177 cases which has NA has been dropped \n",
|
|
"data2 = ms.drop_missing(data=data)\n",
|
|
"data2.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Add a variable to denote NA\n",
|
|
"creating an additional variable indicating whether the data was missing for that observation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"0 714\n",
|
|
"1 177\n",
|
|
"Name: Age_is_NA, dtype: int64\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>Survived</th>\n",
|
|
" <th>Pclass</th>\n",
|
|
" <th>Sex</th>\n",
|
|
" <th>Age</th>\n",
|
|
" <th>SibSp</th>\n",
|
|
" <th>Fare</th>\n",
|
|
" <th>Age_is_NA</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>22.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>7.2500</td>\n",
|
|
" <td>0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>38.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>71.2833</td>\n",
|
|
" <td>0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>26.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>7.9250</td>\n",
|
|
" <td>0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>53.1000</td>\n",
|
|
" <td>0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.0500</td>\n",
|
|
" <td>0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>5</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.4583</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>6</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>54.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>51.8625</td>\n",
|
|
" <td>0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>7</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>21.0750</td>\n",
|
|
" <td>0</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" Survived Pclass Sex Age SibSp Fare Age_is_NA\n",
|
|
"0 0 3 male 22.0 1 7.2500 0\n",
|
|
"1 1 1 female 38.0 1 71.2833 0\n",
|
|
"2 1 3 female 26.0 0 7.9250 0\n",
|
|
"3 1 1 female 35.0 1 53.1000 0\n",
|
|
"4 0 3 male 35.0 0 8.0500 0\n",
|
|
"5 0 3 male NaN 0 8.4583 1\n",
|
|
"6 0 1 male 54.0 0 51.8625 0\n",
|
|
"7 0 3 male 2.0 3 21.0750 0"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Age_is_NA is created, 0-not missing 1-missing for that observation\n",
|
|
"data3 = ms.add_var_denote_NA(data=data,NA_col=['Age'])\n",
|
|
"print(data3.Age_is_NA.value_counts())\n",
|
|
"data3.head(8)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"source": [
|
|
"## Arbitrary Value Imputation\n",
|
|
"Replacing the NA by arbitrary values"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>Survived</th>\n",
|
|
" <th>Pclass</th>\n",
|
|
" <th>Sex</th>\n",
|
|
" <th>Age</th>\n",
|
|
" <th>SibSp</th>\n",
|
|
" <th>Fare</th>\n",
|
|
" <th>Age_-999</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>22.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>7.2500</td>\n",
|
|
" <td>22.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>38.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>71.2833</td>\n",
|
|
" <td>38.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>26.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>7.9250</td>\n",
|
|
" <td>26.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>53.1000</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.0500</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>5</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.4583</td>\n",
|
|
" <td>-999.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>6</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>54.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>51.8625</td>\n",
|
|
" <td>54.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>7</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>21.0750</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" Survived Pclass Sex Age SibSp Fare Age_-999\n",
|
|
"0 0 3 male 22.0 1 7.2500 22.0\n",
|
|
"1 1 1 female 38.0 1 71.2833 38.0\n",
|
|
"2 1 3 female 26.0 0 7.9250 26.0\n",
|
|
"3 1 1 female 35.0 1 53.1000 35.0\n",
|
|
"4 0 3 male 35.0 0 8.0500 35.0\n",
|
|
"5 0 3 male NaN 0 8.4583 -999.0\n",
|
|
"6 0 1 male 54.0 0 51.8625 54.0\n",
|
|
"7 0 3 male 2.0 3 21.0750 2.0"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"data4 = ms.impute_NA_with_arbitrary(data=data,impute_value=-999,NA_col=['Age'])\n",
|
|
"data4.head(8)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Mean/Median/Mode Imputation\n",
|
|
"Replacing the NA by mean/median/mode of that variable"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"28.0\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>Survived</th>\n",
|
|
" <th>Pclass</th>\n",
|
|
" <th>Sex</th>\n",
|
|
" <th>Age</th>\n",
|
|
" <th>SibSp</th>\n",
|
|
" <th>Fare</th>\n",
|
|
" <th>Age_impute_median</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>22.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>7.2500</td>\n",
|
|
" <td>22.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>38.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>71.2833</td>\n",
|
|
" <td>38.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>26.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>7.9250</td>\n",
|
|
" <td>26.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>53.1000</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.0500</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>5</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.4583</td>\n",
|
|
" <td>28.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>6</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>54.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>51.8625</td>\n",
|
|
" <td>54.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>7</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>21.0750</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" Survived Pclass Sex Age SibSp Fare Age_impute_median\n",
|
|
"0 0 3 male 22.0 1 7.2500 22.0\n",
|
|
"1 1 1 female 38.0 1 71.2833 38.0\n",
|
|
"2 1 3 female 26.0 0 7.9250 26.0\n",
|
|
"3 1 1 female 35.0 1 53.1000 35.0\n",
|
|
"4 0 3 male 35.0 0 8.0500 35.0\n",
|
|
"5 0 3 male NaN 0 8.4583 28.0\n",
|
|
"6 0 1 male 54.0 0 51.8625 54.0\n",
|
|
"7 0 3 male 2.0 3 21.0750 2.0"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"print(data.Age.median())\n",
|
|
"data5 = ms.impute_NA_with_avg(data=data,strategy='median',NA_col=['Age'])\n",
|
|
"data5.head(8)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"source": [
|
|
"## End of distribution Imputation\n",
|
|
"replacing the NA by values that are at the far end of the distribution of that variable\n",
|
|
"calculated by mean + 3*std"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>Survived</th>\n",
|
|
" <th>Pclass</th>\n",
|
|
" <th>Sex</th>\n",
|
|
" <th>Age</th>\n",
|
|
" <th>SibSp</th>\n",
|
|
" <th>Fare</th>\n",
|
|
" <th>Age_impute_end_of_distri</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>22.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>7.2500</td>\n",
|
|
" <td>22.00000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>38.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>71.2833</td>\n",
|
|
" <td>38.00000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>26.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>7.9250</td>\n",
|
|
" <td>26.00000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>53.1000</td>\n",
|
|
" <td>35.00000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.0500</td>\n",
|
|
" <td>35.00000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>5</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.4583</td>\n",
|
|
" <td>73.27861</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>6</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>54.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>51.8625</td>\n",
|
|
" <td>54.00000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>7</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>21.0750</td>\n",
|
|
" <td>2.00000</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" Survived Pclass Sex Age SibSp Fare Age_impute_end_of_distri\n",
|
|
"0 0 3 male 22.0 1 7.2500 22.00000\n",
|
|
"1 1 1 female 38.0 1 71.2833 38.00000\n",
|
|
"2 1 3 female 26.0 0 7.9250 26.00000\n",
|
|
"3 1 1 female 35.0 1 53.1000 35.00000\n",
|
|
"4 0 3 male 35.0 0 8.0500 35.00000\n",
|
|
"5 0 3 male NaN 0 8.4583 73.27861\n",
|
|
"6 0 1 male 54.0 0 51.8625 54.00000\n",
|
|
"7 0 3 male 2.0 3 21.0750 2.00000"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"data6 = ms.impute_NA_with_end_of_distribution(data=data,NA_col=['Age'])\n",
|
|
"data6.head(8)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Random Imputation\n",
|
|
"replacing the NA with random sampling from the pool of available observations of the variable\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>Survived</th>\n",
|
|
" <th>Pclass</th>\n",
|
|
" <th>Sex</th>\n",
|
|
" <th>Age</th>\n",
|
|
" <th>SibSp</th>\n",
|
|
" <th>Fare</th>\n",
|
|
" <th>Age_random</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>22.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>7.2500</td>\n",
|
|
" <td>22.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>38.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>71.2833</td>\n",
|
|
" <td>38.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>26.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>7.9250</td>\n",
|
|
" <td>26.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>female</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>53.1000</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.0500</td>\n",
|
|
" <td>35.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>5</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>8.4583</td>\n",
|
|
" <td>28.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>6</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>54.0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>51.8625</td>\n",
|
|
" <td>54.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>7</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>male</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>21.0750</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" Survived Pclass Sex Age SibSp Fare Age_random\n",
|
|
"0 0 3 male 22.0 1 7.2500 22.0\n",
|
|
"1 1 1 female 38.0 1 71.2833 38.0\n",
|
|
"2 1 3 female 26.0 0 7.9250 26.0\n",
|
|
"3 1 1 female 35.0 1 53.1000 35.0\n",
|
|
"4 0 3 male 35.0 0 8.0500 35.0\n",
|
|
"5 0 3 male NaN 0 8.4583 28.0\n",
|
|
"6 0 1 male 54.0 0 51.8625 54.0\n",
|
|
"7 0 3 male 2.0 3 21.0750 2.0"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"data7 = ms.impute_NA_with_random(data=data,NA_col=['Age'])\n",
|
|
"data7.head(8)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|