Files
Amazing-Feature-Engineering/2.3_Demo_Rare_Values.ipynb
DESKTOP-SAT83DL\yimeng.zhang 149c80cedf 2018.12.2 First commit.
2018-12-02 21:11:32 +08:00

272 lines
5.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"# import seaborn as sns\n",
"# import matplotlib.pyplot as plt\n",
"import os\n",
"# plt.style.use('seaborn-colorblind')\n",
"# %matplotlib inline\n",
"from feature_cleaning import rare_values as ra"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Dataset"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Variable Pclass label proportion:\n",
"3 0.551066\n",
"1 0.242424\n",
"2 0.206510\n",
"Name: Pclass, dtype: float64\n",
"Variable SibSp label proportion:\n",
"0 0.682379\n",
"1 0.234568\n",
"2 0.031425\n",
"4 0.020202\n",
"3 0.017957\n",
"8 0.007856\n",
"5 0.005612\n",
"Name: SibSp, dtype: float64\n"
]
}
],
"source": [
"use_cols = [\n",
" 'Pclass', 'Sex', 'Age', 'Fare', 'SibSp',\n",
" 'Survived'\n",
"]\n",
"\n",
"# see column Pclass & SibSp's distributions\n",
"# SibSp has values 3/8/5 that occur rarely, under 2%\n",
"# Pclass has 3 values, but no one is under 20%\n",
"data = pd.read_csv('./data/titanic.csv', usecols=use_cols)\n",
"for i in ['Pclass','SibSp']:\n",
" print('Variable',i,'label proportion:')\n",
" print(data[i].value_counts()/len(data))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Grouping into one new category\n",
"Grouping the observations that show rare labels into a unique category ('rare')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# create the encoder and fit with our data\n",
"enc = ra.GroupingRareValues(cols=['Pclass','SibSp'],threshold=0.01).fit(data)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'col': 'Pclass', 'mapping': 3 3\n",
"1 1\n",
"2 2\n",
"dtype: int64, 'data_type': dtype('int64')}, {'col': 'SibSp', 'mapping': 0 0\n",
"1 1\n",
"2 2\n",
"4 4\n",
"3 3\n",
"8 rare\n",
"5 rare\n",
"dtype: object, 'data_type': dtype('int64')}]\n"
]
}
],
"source": [
"# let's see the mapping\n",
"# for SibSp, values 5 & 8 are encoded as 'rare' as they appear less than 10%\n",
"# for Pclass, nothing changed\n",
"print(enc.mapping)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# perform transformation\n",
"data2 = enc.transform(data)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 608\n",
"1 209\n",
"2 28\n",
"4 18\n",
"3 16\n",
"rare 12\n",
"Name: SibSp, dtype: int64\n"
]
}
],
"source": [
"# check the result\n",
"print(data2.SibSp.value_counts())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mode Imputation\n",
"Replacing the rare label by most frequent label"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# create the encoder and fit with our data\n",
"enc = ra.ModeImputation(cols=['Pclass','SibSp'],threshold=0.01).fit(data)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'col': 'Pclass', 'mapping': 3 3\n",
"1 1\n",
"2 2\n",
"dtype: int64, 'data_type': dtype('int64')}, {'col': 'SibSp', 'mapping': 0 0\n",
"1 1\n",
"2 2\n",
"4 4\n",
"3 3\n",
"8 0\n",
"5 0\n",
"dtype: int64, 'data_type': dtype('int64')}]\n"
]
}
],
"source": [
"# let's see the mapping\n",
"# for SibSp, values 5 & 8 are encoded as 0, as label 0 is the most frequent label\n",
"# for Pclass, nothing changed\n",
"print(enc.mapping)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# perform transformation\n",
"data3 = enc.transform(data)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 620\n",
"1 209\n",
"2 28\n",
"4 18\n",
"3 16\n",
"Name: SibSp, dtype: int64\n"
]
}
],
"source": [
"# check the result\n",
"print(data3.SibSp.value_counts())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}