diff --git a/Seaborn/1. Loading Datasets.ipynb b/Seaborn/1. Loading Datasets.ipynb
deleted file mode 100644
index 23aa8c9..0000000
--- a/Seaborn/1. Loading Datasets.ipynb
+++ /dev/null
@@ -1,4256 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
Prepared by Asif Bhat
\n",
- " \n",
- "
Data Visualization With Seaborn
\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- "\n",
- ""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 674,
- "metadata": {},
- "outputs": [],
- "source": [
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "import pandas as pd\n",
- "import seaborn as sns\n",
- "import matplotlib as mpl"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Loading Datasets"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 675,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " # | \n",
- " Name | \n",
- " Type 1 | \n",
- " Type 2 | \n",
- " HP | \n",
- " Attack | \n",
- " Defense | \n",
- " Sp. Atk | \n",
- " Sp. Def | \n",
- " Speed | \n",
- " Generation | \n",
- " Legendary | \n",
- " Total | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 1 | \n",
- " Bulbasaur | \n",
- " Grass | \n",
- " Poison | \n",
- " 45 | \n",
- " 49 | \n",
- " 49 | \n",
- " 65 | \n",
- " 65 | \n",
- " 45 | \n",
- " 1 | \n",
- " False | \n",
- " 318 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 2 | \n",
- " Ivysaur | \n",
- " Grass | \n",
- " Poison | \n",
- " 60 | \n",
- " 62 | \n",
- " 63 | \n",
- " 80 | \n",
- " 80 | \n",
- " 60 | \n",
- " 1 | \n",
- " False | \n",
- " 405 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 3 | \n",
- " Venusaur | \n",
- " Grass | \n",
- " Poison | \n",
- " 80 | \n",
- " 82 | \n",
- " 83 | \n",
- " 100 | \n",
- " 100 | \n",
- " 80 | \n",
- " 1 | \n",
- " False | \n",
- " 525 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 3 | \n",
- " VenusaurMega Venusaur | \n",
- " Grass | \n",
- " Poison | \n",
- " 80 | \n",
- " 100 | \n",
- " 123 | \n",
- " 122 | \n",
- " 120 | \n",
- " 80 | \n",
- " 1 | \n",
- " False | \n",
- " 625 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 4 | \n",
- " Charmander | \n",
- " Fire | \n",
- " NaN | \n",
- " 39 | \n",
- " 52 | \n",
- " 43 | \n",
- " 60 | \n",
- " 50 | \n",
- " 65 | \n",
- " 1 | \n",
- " False | \n",
- " 309 | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 5 | \n",
- " Charmeleon | \n",
- " Fire | \n",
- " NaN | \n",
- " 58 | \n",
- " 64 | \n",
- " 58 | \n",
- " 80 | \n",
- " 65 | \n",
- " 80 | \n",
- " 1 | \n",
- " False | \n",
- " 405 | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " 6 | \n",
- " Charizard | \n",
- " Fire | \n",
- " Flying | \n",
- " 78 | \n",
- " 84 | \n",
- " 78 | \n",
- " 109 | \n",
- " 85 | \n",
- " 100 | \n",
- " 1 | \n",
- " False | \n",
- " 534 | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " 6 | \n",
- " CharizardMega Charizard X | \n",
- " Fire | \n",
- " Dragon | \n",
- " 78 | \n",
- " 130 | \n",
- " 111 | \n",
- " 130 | \n",
- " 85 | \n",
- " 100 | \n",
- " 1 | \n",
- " False | \n",
- " 634 | \n",
- "
\n",
- " \n",
- " | 8 | \n",
- " 6 | \n",
- " CharizardMega Charizard Y | \n",
- " Fire | \n",
- " Flying | \n",
- " 78 | \n",
- " 104 | \n",
- " 78 | \n",
- " 159 | \n",
- " 115 | \n",
- " 100 | \n",
- " 1 | \n",
- " False | \n",
- " 634 | \n",
- "
\n",
- " \n",
- " | 9 | \n",
- " 7 | \n",
- " Squirtle | \n",
- " Water | \n",
- " NaN | \n",
- " 44 | \n",
- " 48 | \n",
- " 65 | \n",
- " 50 | \n",
- " 64 | \n",
- " 43 | \n",
- " 1 | \n",
- " False | \n",
- " 314 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " # Name Type 1 Type 2 HP Attack Defense Sp. Atk \\\n",
- "0 1 Bulbasaur Grass Poison 45 49 49 65 \n",
- "1 2 Ivysaur Grass Poison 60 62 63 80 \n",
- "2 3 Venusaur Grass Poison 80 82 83 100 \n",
- "3 3 VenusaurMega Venusaur Grass Poison 80 100 123 122 \n",
- "4 4 Charmander Fire NaN 39 52 43 60 \n",
- "5 5 Charmeleon Fire NaN 58 64 58 80 \n",
- "6 6 Charizard Fire Flying 78 84 78 109 \n",
- "7 6 CharizardMega Charizard X Fire Dragon 78 130 111 130 \n",
- "8 6 CharizardMega Charizard Y Fire Flying 78 104 78 159 \n",
- "9 7 Squirtle Water NaN 44 48 65 50 \n",
- "\n",
- " Sp. Def Speed Generation Legendary Total \n",
- "0 65 45 1 False 318 \n",
- "1 80 60 1 False 405 \n",
- "2 100 80 1 False 525 \n",
- "3 120 80 1 False 625 \n",
- "4 50 65 1 False 309 \n",
- "5 65 80 1 False 405 \n",
- "6 85 100 1 False 534 \n",
- "7 85 100 1 False 634 \n",
- "8 115 100 1 False 634 \n",
- "9 64 43 1 False 314 "
- ]
- },
- "execution_count": 675,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "pokemon = pd.read_csv(\"pokemon_updated.csv\")\n",
- "pokemon.head(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 676,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " gender | \n",
- " race/ethnicity | \n",
- " parental level of education | \n",
- " lunch | \n",
- " test preparation course | \n",
- " math score | \n",
- " reading score | \n",
- " writing score | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " female | \n",
- " group B | \n",
- " bachelor's degree | \n",
- " standard | \n",
- " none | \n",
- " 72 | \n",
- " 72 | \n",
- " 74 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " female | \n",
- " group C | \n",
- " some college | \n",
- " standard | \n",
- " completed | \n",
- " 69 | \n",
- " 90 | \n",
- " 88 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " female | \n",
- " group B | \n",
- " master's degree | \n",
- " standard | \n",
- " none | \n",
- " 90 | \n",
- " 95 | \n",
- " 93 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " male | \n",
- " group A | \n",
- " associate's degree | \n",
- " free/reduced | \n",
- " none | \n",
- " 47 | \n",
- " 57 | \n",
- " 44 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " male | \n",
- " group C | \n",
- " some college | \n",
- " standard | \n",
- " none | \n",
- " 76 | \n",
- " 78 | \n",
- " 75 | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " female | \n",
- " group B | \n",
- " associate's degree | \n",
- " standard | \n",
- " none | \n",
- " 71 | \n",
- " 83 | \n",
- " 78 | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " female | \n",
- " group B | \n",
- " some college | \n",
- " standard | \n",
- " completed | \n",
- " 88 | \n",
- " 95 | \n",
- " 92 | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " male | \n",
- " group B | \n",
- " some college | \n",
- " free/reduced | \n",
- " none | \n",
- " 40 | \n",
- " 43 | \n",
- " 39 | \n",
- "
\n",
- " \n",
- " | 8 | \n",
- " male | \n",
- " group D | \n",
- " high school | \n",
- " free/reduced | \n",
- " completed | \n",
- " 64 | \n",
- " 64 | \n",
- " 67 | \n",
- "
\n",
- " \n",
- " | 9 | \n",
- " female | \n",
- " group B | \n",
- " high school | \n",
- " free/reduced | \n",
- " none | \n",
- " 38 | \n",
- " 60 | \n",
- " 50 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " gender race/ethnicity parental level of education lunch \\\n",
- "0 female group B bachelor's degree standard \n",
- "1 female group C some college standard \n",
- "2 female group B master's degree standard \n",
- "3 male group A associate's degree free/reduced \n",
- "4 male group C some college standard \n",
- "5 female group B associate's degree standard \n",
- "6 female group B some college standard \n",
- "7 male group B some college free/reduced \n",
- "8 male group D high school free/reduced \n",
- "9 female group B high school free/reduced \n",
- "\n",
- " test preparation course math score reading score writing score \n",
- "0 none 72 72 74 \n",
- "1 completed 69 90 88 \n",
- "2 none 90 95 93 \n",
- "3 none 47 57 44 \n",
- "4 none 76 78 75 \n",
- "5 none 71 83 78 \n",
- "6 completed 88 95 92 \n",
- "7 none 40 43 39 \n",
- "8 completed 64 64 67 \n",
- "9 none 38 60 50 "
- ]
- },
- "execution_count": 676,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "stdperf = pd.read_csv(\"studentp.csv\")\n",
- "stdperf.head(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 677,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Country | \n",
- " Confirmed | \n",
- " Recovered | \n",
- " Deaths | \n",
- "
\n",
- " \n",
- " | Date | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 2020-01-22 | \n",
- " Afghanistan | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 2020-01-22 | \n",
- " Albania | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 2020-01-22 | \n",
- " Algeria | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 2020-01-22 | \n",
- " Andorra | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 2020-01-22 | \n",
- " Angola | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 2020-01-22 | \n",
- " Antigua and Barbuda | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 2020-01-22 | \n",
- " Argentina | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 2020-01-22 | \n",
- " Armenia | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 2020-01-22 | \n",
- " Australia | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 2020-01-22 | \n",
- " Austria | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Country Confirmed Recovered Deaths\n",
- "Date \n",
- "2020-01-22 Afghanistan 0 0 0\n",
- "2020-01-22 Albania 0 0 0\n",
- "2020-01-22 Algeria 0 0 0\n",
- "2020-01-22 Andorra 0 0 0\n",
- "2020-01-22 Angola 0 0 0\n",
- "2020-01-22 Antigua and Barbuda 0 0 0\n",
- "2020-01-22 Argentina 0 0 0\n",
- "2020-01-22 Armenia 0 0 0\n",
- "2020-01-22 Australia 0 0 0\n",
- "2020-01-22 Austria 0 0 0"
- ]
- },
- "execution_count": 677,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "corona = pd.read_csv('C:/Users/DELL/Documents/GitHub/Public/COVID-19/covid/data/countries-aggregated.csv' ,\n",
- " index_col='Date' , parse_dates=True)\n",
- "corona.head(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 678,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Shape of You | \n",
- " Despacito | \n",
- " Something Just Like This | \n",
- " HUMBLE. | \n",
- " Unforgettable | \n",
- "
\n",
- " \n",
- " | Date | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 2017-01-06 | \n",
- " 12287078 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 2017-01-07 | \n",
- " 13190270 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 2017-01-08 | \n",
- " 13099919 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 2017-01-09 | \n",
- " 14506351 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 2017-01-10 | \n",
- " 14275628 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 2017-01-11 | \n",
- " 14372699 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 2017-01-12 | \n",
- " 14148108 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 2017-01-13 | \n",
- " 14536236 | \n",
- " 275178.0 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 2017-01-14 | \n",
- " 14173311 | \n",
- " 1144886.0 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " | 2017-01-15 | \n",
- " 12889849 | \n",
- " 1288198.0 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Shape of You Despacito Something Just Like This HUMBLE. \\\n",
- "Date \n",
- "2017-01-06 12287078 NaN NaN NaN \n",
- "2017-01-07 13190270 NaN NaN NaN \n",
- "2017-01-08 13099919 NaN NaN NaN \n",
- "2017-01-09 14506351 NaN NaN NaN \n",
- "2017-01-10 14275628 NaN NaN NaN \n",
- "2017-01-11 14372699 NaN NaN NaN \n",
- "2017-01-12 14148108 NaN NaN NaN \n",
- "2017-01-13 14536236 275178.0 NaN NaN \n",
- "2017-01-14 14173311 1144886.0 NaN NaN \n",
- "2017-01-15 12889849 1288198.0 NaN NaN \n",
- "\n",
- " Unforgettable \n",
- "Date \n",
- "2017-01-06 NaN \n",
- "2017-01-07 NaN \n",
- "2017-01-08 NaN \n",
- "2017-01-09 NaN \n",
- "2017-01-10 NaN \n",
- "2017-01-11 NaN \n",
- "2017-01-12 NaN \n",
- "2017-01-13 NaN \n",
- "2017-01-14 NaN \n",
- "2017-01-15 NaN "
- ]
- },
- "execution_count": 678,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "spotify = pd.read_csv(\"spotify.csv\" , index_col=\"Date\")\n",
- "spotify.head(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 679,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " longitude | \n",
- " latitude | \n",
- " housing_median_age | \n",
- " total_rooms | \n",
- " total_bedrooms | \n",
- " population | \n",
- " households | \n",
- " median_income | \n",
- " median_house_value | \n",
- " ocean_proximity | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 20635 | \n",
- " -121.09 | \n",
- " 39.48 | \n",
- " 25.0 | \n",
- " 1665.0 | \n",
- " 374.0 | \n",
- " 845.0 | \n",
- " 330.0 | \n",
- " 1.5603 | \n",
- " 78100.0 | \n",
- " INLAND | \n",
- "
\n",
- " \n",
- " | 20636 | \n",
- " -121.21 | \n",
- " 39.49 | \n",
- " 18.0 | \n",
- " 697.0 | \n",
- " 150.0 | \n",
- " 356.0 | \n",
- " 114.0 | \n",
- " 2.5568 | \n",
- " 77100.0 | \n",
- " INLAND | \n",
- "
\n",
- " \n",
- " | 20637 | \n",
- " -121.22 | \n",
- " 39.43 | \n",
- " 17.0 | \n",
- " 2254.0 | \n",
- " 485.0 | \n",
- " 1007.0 | \n",
- " 433.0 | \n",
- " 1.7000 | \n",
- " 92300.0 | \n",
- " INLAND | \n",
- "
\n",
- " \n",
- " | 20638 | \n",
- " -121.32 | \n",
- " 39.43 | \n",
- " 18.0 | \n",
- " 1860.0 | \n",
- " 409.0 | \n",
- " 741.0 | \n",
- " 349.0 | \n",
- " 1.8672 | \n",
- " 84700.0 | \n",
- " INLAND | \n",
- "
\n",
- " \n",
- " | 20639 | \n",
- " -121.24 | \n",
- " 39.37 | \n",
- " 16.0 | \n",
- " 2785.0 | \n",
- " 616.0 | \n",
- " 1387.0 | \n",
- " 530.0 | \n",
- " 2.3886 | \n",
- " 89400.0 | \n",
- " INLAND | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " longitude latitude housing_median_age total_rooms total_bedrooms \\\n",
- "20635 -121.09 39.48 25.0 1665.0 374.0 \n",
- "20636 -121.21 39.49 18.0 697.0 150.0 \n",
- "20637 -121.22 39.43 17.0 2254.0 485.0 \n",
- "20638 -121.32 39.43 18.0 1860.0 409.0 \n",
- "20639 -121.24 39.37 16.0 2785.0 616.0 \n",
- "\n",
- " population households median_income median_house_value \\\n",
- "20635 845.0 330.0 1.5603 78100.0 \n",
- "20636 356.0 114.0 2.5568 77100.0 \n",
- "20637 1007.0 433.0 1.7000 92300.0 \n",
- "20638 741.0 349.0 1.8672 84700.0 \n",
- "20639 1387.0 530.0 2.3886 89400.0 \n",
- "\n",
- " ocean_proximity \n",
- "20635 INLAND \n",
- "20636 INLAND \n",
- "20637 INLAND \n",
- "20638 INLAND \n",
- "20639 INLAND "
- ]
- },
- "execution_count": 679,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "housing = pd.read_csv('C:/Users/DELL/Documents/GitHub/Data-Visualization/housing.csv')\n",
- "housing.tail()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 680,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " age | \n",
- " sex | \n",
- " bmi | \n",
- " children | \n",
- " smoker | \n",
- " region | \n",
- " charges | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 19 | \n",
- " female | \n",
- " 27.900 | \n",
- " 0 | \n",
- " yes | \n",
- " southwest | \n",
- " 16884.92400 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 18 | \n",
- " male | \n",
- " 33.770 | \n",
- " 1 | \n",
- " no | \n",
- " southeast | \n",
- " 1725.55230 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 28 | \n",
- " male | \n",
- " 33.000 | \n",
- " 3 | \n",
- " no | \n",
- " southeast | \n",
- " 4449.46200 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 33 | \n",
- " male | \n",
- " 22.705 | \n",
- " 0 | \n",
- " no | \n",
- " northwest | \n",
- " 21984.47061 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 32 | \n",
- " male | \n",
- " 28.880 | \n",
- " 0 | \n",
- " no | \n",
- " northwest | \n",
- " 3866.85520 | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 31 | \n",
- " female | \n",
- " 25.740 | \n",
- " 0 | \n",
- " no | \n",
- " southeast | \n",
- " 3756.62160 | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " 46 | \n",
- " female | \n",
- " 33.440 | \n",
- " 1 | \n",
- " no | \n",
- " southeast | \n",
- " 8240.58960 | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " 37 | \n",
- " female | \n",
- " 27.740 | \n",
- " 3 | \n",
- " no | \n",
- " northwest | \n",
- " 7281.50560 | \n",
- "
\n",
- " \n",
- " | 8 | \n",
- " 37 | \n",
- " male | \n",
- " 29.830 | \n",
- " 2 | \n",
- " no | \n",
- " northeast | \n",
- " 6406.41070 | \n",
- "
\n",
- " \n",
- " | 9 | \n",
- " 60 | \n",
- " female | \n",
- " 25.840 | \n",
- " 0 | \n",
- " no | \n",
- " northwest | \n",
- " 28923.13692 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " age sex bmi children smoker region charges\n",
- "0 19 female 27.900 0 yes southwest 16884.92400\n",
- "1 18 male 33.770 1 no southeast 1725.55230\n",
- "2 28 male 33.000 3 no southeast 4449.46200\n",
- "3 33 male 22.705 0 no northwest 21984.47061\n",
- "4 32 male 28.880 0 no northwest 3866.85520\n",
- "5 31 female 25.740 0 no southeast 3756.62160\n",
- "6 46 female 33.440 1 no southeast 8240.58960\n",
- "7 37 female 27.740 3 no northwest 7281.50560\n",
- "8 37 male 29.830 2 no northeast 6406.41070\n",
- "9 60 female 25.840 0 no northwest 28923.13692"
- ]
- },
- "execution_count": 680,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "insurance = pd.read_csv('C:/Users/DELL/Documents/GitHub/Data-Visualization/insurance.csv')\n",
- "insurance.head(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 681,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Age | \n",
- " Gender | \n",
- " Period | \n",
- " Unemployed | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 16 to 19 years | \n",
- " Men | \n",
- " 2005-01-01 | \n",
- " 91000 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 20 to 24 years | \n",
- " Men | \n",
- " 2005-01-01 | \n",
- " 175000 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 25 to 34 years | \n",
- " Men | \n",
- " 2005-01-01 | \n",
- " 194000 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 35 to 44 years | \n",
- " Men | \n",
- " 2005-01-01 | \n",
- " 201000 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 45 to 54 years | \n",
- " Men | \n",
- " 2005-01-01 | \n",
- " 207000 | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 55 to 64 years | \n",
- " Men | \n",
- " 2005-01-01 | \n",
- " 101000 | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " 65 years and over | \n",
- " Men | \n",
- " 2005-01-01 | \n",
- " 33000 | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " 16 to 19 years | \n",
- " Women | \n",
- " 2005-01-01 | \n",
- " 38000 | \n",
- "
\n",
- " \n",
- " | 8 | \n",
- " 20 to 24 years | \n",
- " Women | \n",
- " 2005-01-01 | \n",
- " 90000 | \n",
- "
\n",
- " \n",
- " | 9 | \n",
- " 25 to 34 years | \n",
- " Women | \n",
- " 2005-01-01 | \n",
- " 142000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Age Gender Period Unemployed\n",
- "0 16 to 19 years Men 2005-01-01 91000\n",
- "1 20 to 24 years Men 2005-01-01 175000\n",
- "2 25 to 34 years Men 2005-01-01 194000\n",
- "3 35 to 44 years Men 2005-01-01 201000\n",
- "4 45 to 54 years Men 2005-01-01 207000\n",
- "5 55 to 64 years Men 2005-01-01 101000\n",
- "6 65 years and over Men 2005-01-01 33000\n",
- "7 16 to 19 years Women 2005-01-01 38000\n",
- "8 20 to 24 years Women 2005-01-01 90000\n",
- "9 25 to 34 years Women 2005-01-01 142000"
- ]
- },
- "execution_count": 681,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "employment = pd.read_excel(\"unemployment.xlsx\")\n",
- "employment.head(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 683,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " ticket | \n",
- " requestor | \n",
- " RequestorSeniority | \n",
- " ITOwner | \n",
- " FiledAgainst | \n",
- " TicketType | \n",
- " Severity | \n",
- " Priority | \n",
- " daysOpen | \n",
- " Satisfaction | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 1 | \n",
- " 1929 | \n",
- " 1 - Junior | \n",
- " 50 | \n",
- " Systems | \n",
- " Issue | \n",
- " 2 - Normal | \n",
- " 0 - Unassigned | \n",
- " 3 | \n",
- " 1 - Unsatisfied | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 2 | \n",
- " 1587 | \n",
- " 2 - Regular | \n",
- " 15 | \n",
- " Software | \n",
- " Request | \n",
- " 1 - Minor | \n",
- " 1 - Low | \n",
- " 5 | \n",
- " 1 - Unsatisfied | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 3 | \n",
- " 925 | \n",
- " 2 - Regular | \n",
- " 15 | \n",
- " Access/Login | \n",
- " Request | \n",
- " 2 - Normal | \n",
- " 0 - Unassigned | \n",
- " 0 | \n",
- " 0 - Unknown | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 4 | \n",
- " 413 | \n",
- " 4 - Management | \n",
- " 22 | \n",
- " Systems | \n",
- " Request | \n",
- " 2 - Normal | \n",
- " 0 - Unassigned | \n",
- " 20 | \n",
- " 0 - Unknown | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 5 | \n",
- " 318 | \n",
- " 1 - Junior | \n",
- " 22 | \n",
- " Access/Login | \n",
- " Request | \n",
- " 2 - Normal | \n",
- " 1 - Low | \n",
- " 1 | \n",
- " 1 - Unsatisfied | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 6 | \n",
- " 858 | \n",
- " 4 - Management | \n",
- " 38 | \n",
- " Access/Login | \n",
- " Request | \n",
- " 2 - Normal | \n",
- " 3 - High | \n",
- " 0 | \n",
- " 0 - Unknown | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " 7 | \n",
- " 1978 | \n",
- " 3 - Senior | \n",
- " 10 | \n",
- " Systems | \n",
- " Request | \n",
- " 2 - Normal | \n",
- " 3 - High | \n",
- " 9 | \n",
- " 0 - Unknown | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " 8 | \n",
- " 1209 | \n",
- " 4 - Management | \n",
- " 1 | \n",
- " Software | \n",
- " Request | \n",
- " 2 - Normal | \n",
- " 0 - Unassigned | \n",
- " 15 | \n",
- " 0 - Unknown | \n",
- "
\n",
- " \n",
- " | 8 | \n",
- " 9 | \n",
- " 887 | \n",
- " 2 - Regular | \n",
- " 14 | \n",
- " Software | \n",
- " Request | \n",
- " 2 - Normal | \n",
- " 2 - Medium | \n",
- " 6 | \n",
- " 1 - Unsatisfied | \n",
- "
\n",
- " \n",
- " | 9 | \n",
- " 10 | \n",
- " 1780 | \n",
- " 3 - Senior | \n",
- " 46 | \n",
- " Access/Login | \n",
- " Request | \n",
- " 2 - Normal | \n",
- " 1 - Low | \n",
- " 1 | \n",
- " 1 - Unsatisfied | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " ticket requestor RequestorSeniority ITOwner FiledAgainst TicketType \\\n",
- "0 1 1929 1 - Junior 50 Systems Issue \n",
- "1 2 1587 2 - Regular 15 Software Request \n",
- "2 3 925 2 - Regular 15 Access/Login Request \n",
- "3 4 413 4 - Management 22 Systems Request \n",
- "4 5 318 1 - Junior 22 Access/Login Request \n",
- "5 6 858 4 - Management 38 Access/Login Request \n",
- "6 7 1978 3 - Senior 10 Systems Request \n",
- "7 8 1209 4 - Management 1 Software Request \n",
- "8 9 887 2 - Regular 14 Software Request \n",
- "9 10 1780 3 - Senior 46 Access/Login Request \n",
- "\n",
- " Severity Priority daysOpen Satisfaction \n",
- "0 2 - Normal 0 - Unassigned 3 1 - Unsatisfied \n",
- "1 1 - Minor 1 - Low 5 1 - Unsatisfied \n",
- "2 2 - Normal 0 - Unassigned 0 0 - Unknown \n",
- "3 2 - Normal 0 - Unassigned 20 0 - Unknown \n",
- "4 2 - Normal 1 - Low 1 1 - Unsatisfied \n",
- "5 2 - Normal 3 - High 0 0 - Unknown \n",
- "6 2 - Normal 3 - High 9 0 - Unknown \n",
- "7 2 - Normal 0 - Unassigned 15 0 - Unknown \n",
- "8 2 - Normal 2 - Medium 6 1 - Unsatisfied \n",
- "9 2 - Normal 1 - Low 1 1 - Unsatisfied "
- ]
- },
- "execution_count": 683,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "helpdesk = pd.read_csv(\"helpdesk.csv\")\n",
- "helpdesk.head(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 684,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Species | \n",
- " Weight | \n",
- " Length1 | \n",
- " Length2 | \n",
- " Length3 | \n",
- " Height | \n",
- " Width | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " Bream | \n",
- " 242.0 | \n",
- " 23.2 | \n",
- " 25.4 | \n",
- " 30.0 | \n",
- " 11.5200 | \n",
- " 4.0200 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " Bream | \n",
- " 290.0 | \n",
- " 24.0 | \n",
- " 26.3 | \n",
- " 31.2 | \n",
- " 12.4800 | \n",
- " 4.3056 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " Bream | \n",
- " 340.0 | \n",
- " 23.9 | \n",
- " 26.5 | \n",
- " 31.1 | \n",
- " 12.3778 | \n",
- " 4.6961 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " Bream | \n",
- " 363.0 | \n",
- " 26.3 | \n",
- " 29.0 | \n",
- " 33.5 | \n",
- " 12.7300 | \n",
- " 4.4555 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " Bream | \n",
- " 430.0 | \n",
- " 26.5 | \n",
- " 29.0 | \n",
- " 34.0 | \n",
- " 12.4440 | \n",
- " 5.1340 | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " Bream | \n",
- " 450.0 | \n",
- " 26.8 | \n",
- " 29.7 | \n",
- " 34.7 | \n",
- " 13.6024 | \n",
- " 4.9274 | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " Bream | \n",
- " 500.0 | \n",
- " 26.8 | \n",
- " 29.7 | \n",
- " 34.5 | \n",
- " 14.1795 | \n",
- " 5.2785 | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " Bream | \n",
- " 390.0 | \n",
- " 27.6 | \n",
- " 30.0 | \n",
- " 35.0 | \n",
- " 12.6700 | \n",
- " 4.6900 | \n",
- "
\n",
- " \n",
- " | 8 | \n",
- " Bream | \n",
- " 450.0 | \n",
- " 27.6 | \n",
- " 30.0 | \n",
- " 35.1 | \n",
- " 14.0049 | \n",
- " 4.8438 | \n",
- "
\n",
- " \n",
- " | 9 | \n",
- " Bream | \n",
- " 500.0 | \n",
- " 28.5 | \n",
- " 30.7 | \n",
- " 36.2 | \n",
- " 14.2266 | \n",
- " 4.9594 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Species Weight Length1 Length2 Length3 Height Width\n",
- "0 Bream 242.0 23.2 25.4 30.0 11.5200 4.0200\n",
- "1 Bream 290.0 24.0 26.3 31.2 12.4800 4.3056\n",
- "2 Bream 340.0 23.9 26.5 31.1 12.3778 4.6961\n",
- "3 Bream 363.0 26.3 29.0 33.5 12.7300 4.4555\n",
- "4 Bream 430.0 26.5 29.0 34.0 12.4440 5.1340\n",
- "5 Bream 450.0 26.8 29.7 34.7 13.6024 4.9274\n",
- "6 Bream 500.0 26.8 29.7 34.5 14.1795 5.2785\n",
- "7 Bream 390.0 27.6 30.0 35.0 12.6700 4.6900\n",
- "8 Bream 450.0 27.6 30.0 35.1 14.0049 4.8438\n",
- "9 Bream 500.0 28.5 30.7 36.2 14.2266 4.9594"
- ]
- },
- "execution_count": 684,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "fish= pd.read_csv(\"Fish.csv\")\n",
- "fish.head(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 685,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " id | \n",
- " diet | \n",
- " pulse | \n",
- " time | \n",
- " kind | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 1 | \n",
- " low fat | \n",
- " 85 | \n",
- " 1 min | \n",
- " rest | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 1 | \n",
- " low fat | \n",
- " 85 | \n",
- " 15 min | \n",
- " rest | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 1 | \n",
- " low fat | \n",
- " 88 | \n",
- " 30 min | \n",
- " rest | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 2 | \n",
- " low fat | \n",
- " 90 | \n",
- " 1 min | \n",
- " rest | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 2 | \n",
- " low fat | \n",
- " 92 | \n",
- " 15 min | \n",
- " rest | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 2 | \n",
- " low fat | \n",
- " 93 | \n",
- " 30 min | \n",
- " rest | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " 3 | \n",
- " low fat | \n",
- " 97 | \n",
- " 1 min | \n",
- " rest | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " 3 | \n",
- " low fat | \n",
- " 97 | \n",
- " 15 min | \n",
- " rest | \n",
- "
\n",
- " \n",
- " | 8 | \n",
- " 3 | \n",
- " low fat | \n",
- " 94 | \n",
- " 30 min | \n",
- " rest | \n",
- "
\n",
- " \n",
- " | 9 | \n",
- " 4 | \n",
- " low fat | \n",
- " 80 | \n",
- " 1 min | \n",
- " rest | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " id diet pulse time kind\n",
- "0 1 low fat 85 1 min rest\n",
- "1 1 low fat 85 15 min rest\n",
- "2 1 low fat 88 30 min rest\n",
- "3 2 low fat 90 1 min rest\n",
- "4 2 low fat 92 15 min rest\n",
- "5 2 low fat 93 30 min rest\n",
- "6 3 low fat 97 1 min rest\n",
- "7 3 low fat 97 15 min rest\n",
- "8 3 low fat 94 30 min rest\n",
- "9 4 low fat 80 1 min rest"
- ]
- },
- "execution_count": 685,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "exercise = pd.read_csv(\"exercise.csv\")\n",
- "exercise.head(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 686,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " country | \n",
- " year | \n",
- " sex | \n",
- " age | \n",
- " suicides_no | \n",
- " population | \n",
- " suicides/100k pop | \n",
- " country-year | \n",
- " HDI for year | \n",
- " gdp_for_year ($) | \n",
- " gdp_per_capita ($) | \n",
- " generation | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " Albania | \n",
- " 1987 | \n",
- " male | \n",
- " 15-24 years | \n",
- " 21 | \n",
- " 312900 | \n",
- " 6.71 | \n",
- " Albania1987 | \n",
- " NaN | \n",
- " 2,156,624,900 | \n",
- " 796 | \n",
- " Generation X | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " Albania | \n",
- " 1987 | \n",
- " male | \n",
- " 35-54 years | \n",
- " 16 | \n",
- " 308000 | \n",
- " 5.19 | \n",
- " Albania1987 | \n",
- " NaN | \n",
- " 2,156,624,900 | \n",
- " 796 | \n",
- " Silent | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " Albania | \n",
- " 1987 | \n",
- " female | \n",
- " 15-24 years | \n",
- " 14 | \n",
- " 289700 | \n",
- " 4.83 | \n",
- " Albania1987 | \n",
- " NaN | \n",
- " 2,156,624,900 | \n",
- " 796 | \n",
- " Generation X | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " Albania | \n",
- " 1987 | \n",
- " male | \n",
- " 75+ years | \n",
- " 1 | \n",
- " 21800 | \n",
- " 4.59 | \n",
- " Albania1987 | \n",
- " NaN | \n",
- " 2,156,624,900 | \n",
- " 796 | \n",
- " G.I. Generation | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " Albania | \n",
- " 1987 | \n",
- " male | \n",
- " 25-34 years | \n",
- " 9 | \n",
- " 274300 | \n",
- " 3.28 | \n",
- " Albania1987 | \n",
- " NaN | \n",
- " 2,156,624,900 | \n",
- " 796 | \n",
- " Boomers | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " Albania | \n",
- " 1987 | \n",
- " female | \n",
- " 75+ years | \n",
- " 1 | \n",
- " 35600 | \n",
- " 2.81 | \n",
- " Albania1987 | \n",
- " NaN | \n",
- " 2,156,624,900 | \n",
- " 796 | \n",
- " G.I. Generation | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " Albania | \n",
- " 1987 | \n",
- " female | \n",
- " 35-54 years | \n",
- " 6 | \n",
- " 278800 | \n",
- " 2.15 | \n",
- " Albania1987 | \n",
- " NaN | \n",
- " 2,156,624,900 | \n",
- " 796 | \n",
- " Silent | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " Albania | \n",
- " 1987 | \n",
- " female | \n",
- " 25-34 years | \n",
- " 4 | \n",
- " 257200 | \n",
- " 1.56 | \n",
- " Albania1987 | \n",
- " NaN | \n",
- " 2,156,624,900 | \n",
- " 796 | \n",
- " Boomers | \n",
- "
\n",
- " \n",
- " | 8 | \n",
- " Albania | \n",
- " 1987 | \n",
- " male | \n",
- " 55-74 years | \n",
- " 1 | \n",
- " 137500 | \n",
- " 0.73 | \n",
- " Albania1987 | \n",
- " NaN | \n",
- " 2,156,624,900 | \n",
- " 796 | \n",
- " G.I. Generation | \n",
- "
\n",
- " \n",
- " | 9 | \n",
- " Albania | \n",
- " 1987 | \n",
- " female | \n",
- " 5-14 years | \n",
- " 0 | \n",
- " 311000 | \n",
- " 0.00 | \n",
- " Albania1987 | \n",
- " NaN | \n",
- " 2,156,624,900 | \n",
- " 796 | \n",
- " Generation X | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " country year sex age suicides_no population \\\n",
- "0 Albania 1987 male 15-24 years 21 312900 \n",
- "1 Albania 1987 male 35-54 years 16 308000 \n",
- "2 Albania 1987 female 15-24 years 14 289700 \n",
- "3 Albania 1987 male 75+ years 1 21800 \n",
- "4 Albania 1987 male 25-34 years 9 274300 \n",
- "5 Albania 1987 female 75+ years 1 35600 \n",
- "6 Albania 1987 female 35-54 years 6 278800 \n",
- "7 Albania 1987 female 25-34 years 4 257200 \n",
- "8 Albania 1987 male 55-74 years 1 137500 \n",
- "9 Albania 1987 female 5-14 years 0 311000 \n",
- "\n",
- " suicides/100k pop country-year HDI for year gdp_for_year ($) \\\n",
- "0 6.71 Albania1987 NaN 2,156,624,900 \n",
- "1 5.19 Albania1987 NaN 2,156,624,900 \n",
- "2 4.83 Albania1987 NaN 2,156,624,900 \n",
- "3 4.59 Albania1987 NaN 2,156,624,900 \n",
- "4 3.28 Albania1987 NaN 2,156,624,900 \n",
- "5 2.81 Albania1987 NaN 2,156,624,900 \n",
- "6 2.15 Albania1987 NaN 2,156,624,900 \n",
- "7 1.56 Albania1987 NaN 2,156,624,900 \n",
- "8 0.73 Albania1987 NaN 2,156,624,900 \n",
- "9 0.00 Albania1987 NaN 2,156,624,900 \n",
- "\n",
- " gdp_per_capita ($) generation \n",
- "0 796 Generation X \n",
- "1 796 Silent \n",
- "2 796 Generation X \n",
- "3 796 G.I. Generation \n",
- "4 796 Boomers \n",
- "5 796 G.I. Generation \n",
- "6 796 Silent \n",
- "7 796 Boomers \n",
- "8 796 G.I. Generation \n",
- "9 796 Generation X "
- ]
- },
- "execution_count": 686,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "suicide = pd.read_csv(\"suicide.csv\") \n",
- "suicide.head(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 687,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Type | \n",
- " Coverage | \n",
- " OdName | \n",
- " AREA | \n",
- " AreaName | \n",
- " REG | \n",
- " RegName | \n",
- " DEV | \n",
- " DevName | \n",
- " 1980 | \n",
- " ... | \n",
- " 2004 | \n",
- " 2005 | \n",
- " 2006 | \n",
- " 2007 | \n",
- " 2008 | \n",
- " 2009 | \n",
- " 2010 | \n",
- " 2011 | \n",
- " 2012 | \n",
- " 2013 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " Immigrants | \n",
- " Foreigners | \n",
- " Afghanistan | \n",
- " 935 | \n",
- " Asia | \n",
- " 5501 | \n",
- " Southern Asia | \n",
- " 902 | \n",
- " Developing regions | \n",
- " 16 | \n",
- " ... | \n",
- " 2978 | \n",
- " 3436 | \n",
- " 3009 | \n",
- " 2652 | \n",
- " 2111 | \n",
- " 1746 | \n",
- " 1758 | \n",
- " 2203 | \n",
- " 2635 | \n",
- " 2004 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " Immigrants | \n",
- " Foreigners | \n",
- " Albania | \n",
- " 908 | \n",
- " Europe | \n",
- " 925 | \n",
- " Southern Europe | \n",
- " 901 | \n",
- " Developed regions | \n",
- " 1 | \n",
- " ... | \n",
- " 1450 | \n",
- " 1223 | \n",
- " 856 | \n",
- " 702 | \n",
- " 560 | \n",
- " 716 | \n",
- " 561 | \n",
- " 539 | \n",
- " 620 | \n",
- " 603 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " Immigrants | \n",
- " Foreigners | \n",
- " Algeria | \n",
- " 903 | \n",
- " Africa | \n",
- " 912 | \n",
- " Northern Africa | \n",
- " 902 | \n",
- " Developing regions | \n",
- " 80 | \n",
- " ... | \n",
- " 3616 | \n",
- " 3626 | \n",
- " 4807 | \n",
- " 3623 | \n",
- " 4005 | \n",
- " 5393 | \n",
- " 4752 | \n",
- " 4325 | \n",
- " 3774 | \n",
- " 4331 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " Immigrants | \n",
- " Foreigners | \n",
- " American Samoa | \n",
- " 909 | \n",
- " Oceania | \n",
- " 957 | \n",
- " Polynesia | \n",
- " 902 | \n",
- " Developing regions | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " Immigrants | \n",
- " Foreigners | \n",
- " Andorra | \n",
- " 908 | \n",
- " Europe | \n",
- " 925 | \n",
- " Southern Europe | \n",
- " 901 | \n",
- " Developed regions | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 43 columns
\n",
- "
"
- ],
- "text/plain": [
- " Type Coverage OdName AREA AreaName REG \\\n",
- "0 Immigrants Foreigners Afghanistan 935 Asia 5501 \n",
- "1 Immigrants Foreigners Albania 908 Europe 925 \n",
- "2 Immigrants Foreigners Algeria 903 Africa 912 \n",
- "3 Immigrants Foreigners American Samoa 909 Oceania 957 \n",
- "4 Immigrants Foreigners Andorra 908 Europe 925 \n",
- "\n",
- " RegName DEV DevName 1980 ... 2004 2005 2006 \\\n",
- "0 Southern Asia 902 Developing regions 16 ... 2978 3436 3009 \n",
- "1 Southern Europe 901 Developed regions 1 ... 1450 1223 856 \n",
- "2 Northern Africa 902 Developing regions 80 ... 3616 3626 4807 \n",
- "3 Polynesia 902 Developing regions 0 ... 0 0 1 \n",
- "4 Southern Europe 901 Developed regions 0 ... 0 0 1 \n",
- "\n",
- " 2007 2008 2009 2010 2011 2012 2013 \n",
- "0 2652 2111 1746 1758 2203 2635 2004 \n",
- "1 702 560 716 561 539 620 603 \n",
- "2 3623 4005 5393 4752 4325 3774 4331 \n",
- "3 0 0 0 0 0 0 0 \n",
- "4 1 0 0 0 0 1 1 \n",
- "\n",
- "[5 rows x 43 columns]"
- ]
- },
- "execution_count": 687,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "canada = pd.read_csv(\"canada.csv\")\n",
- "canada.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 688,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Index(['Type', 'Coverage', 'OdName', 'AREA', 'AreaName', 'REG', 'RegName',\n",
- " 'DEV', 'DevName', '1980', '1981', '1982', '1983', '1984', '1985',\n",
- " '1986', '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994',\n",
- " '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003',\n",
- " '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012',\n",
- " '2013'],\n",
- " dtype='object')"
- ]
- },
- "execution_count": 688,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "canada.columns"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 689,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " OdName | \n",
- " 1980 | \n",
- " 1981 | \n",
- " 1982 | \n",
- " 1983 | \n",
- " 1984 | \n",
- " 1985 | \n",
- " 1986 | \n",
- " 1987 | \n",
- " 1988 | \n",
- " ... | \n",
- " 2004 | \n",
- " 2005 | \n",
- " 2006 | \n",
- " 2007 | \n",
- " 2008 | \n",
- " 2009 | \n",
- " 2010 | \n",
- " 2011 | \n",
- " 2012 | \n",
- " 2013 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " Afghanistan | \n",
- " 16 | \n",
- " 39 | \n",
- " 39 | \n",
- " 47 | \n",
- " 71 | \n",
- " 340 | \n",
- " 496 | \n",
- " 741 | \n",
- " 828 | \n",
- " ... | \n",
- " 2978 | \n",
- " 3436 | \n",
- " 3009 | \n",
- " 2652 | \n",
- " 2111 | \n",
- " 1746 | \n",
- " 1758 | \n",
- " 2203 | \n",
- " 2635 | \n",
- " 2004 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " Albania | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 2 | \n",
- " 2 | \n",
- " ... | \n",
- " 1450 | \n",
- " 1223 | \n",
- " 856 | \n",
- " 702 | \n",
- " 560 | \n",
- " 716 | \n",
- " 561 | \n",
- " 539 | \n",
- " 620 | \n",
- " 603 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " Algeria | \n",
- " 80 | \n",
- " 67 | \n",
- " 71 | \n",
- " 69 | \n",
- " 63 | \n",
- " 44 | \n",
- " 69 | \n",
- " 132 | \n",
- " 242 | \n",
- " ... | \n",
- " 3616 | \n",
- " 3626 | \n",
- " 4807 | \n",
- " 3623 | \n",
- " 4005 | \n",
- " 5393 | \n",
- " 4752 | \n",
- " 4325 | \n",
- " 3774 | \n",
- " 4331 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " American Samoa | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " Andorra | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 2 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 35 columns
\n",
- "
"
- ],
- "text/plain": [
- " OdName 1980 1981 1982 1983 1984 1985 1986 1987 1988 ... \\\n",
- "0 Afghanistan 16 39 39 47 71 340 496 741 828 ... \n",
- "1 Albania 1 0 0 0 0 0 1 2 2 ... \n",
- "2 Algeria 80 67 71 69 63 44 69 132 242 ... \n",
- "3 American Samoa 0 1 0 0 0 0 0 1 0 ... \n",
- "4 Andorra 0 0 0 0 0 0 2 0 0 ... \n",
- "\n",
- " 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 \n",
- "0 2978 3436 3009 2652 2111 1746 1758 2203 2635 2004 \n",
- "1 1450 1223 856 702 560 716 561 539 620 603 \n",
- "2 3616 3626 4807 3623 4005 5393 4752 4325 3774 4331 \n",
- "3 0 0 1 0 0 0 0 0 0 0 \n",
- "4 0 0 1 1 0 0 0 0 1 1 \n",
- "\n",
- "[5 rows x 35 columns]"
- ]
- },
- "execution_count": 689,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "canada.drop(columns=['AREA' , 'DEV', 'DevName' , 'REG', 'Type', 'Coverage' , 'AreaName', 'RegName' ], inplace=True)\n",
- "canada.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 690,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Country | \n",
- " 1980 | \n",
- " 1981 | \n",
- " 1982 | \n",
- " 1983 | \n",
- " 1984 | \n",
- " 1985 | \n",
- " 1986 | \n",
- " 1987 | \n",
- " 1988 | \n",
- " ... | \n",
- " 2004 | \n",
- " 2005 | \n",
- " 2006 | \n",
- " 2007 | \n",
- " 2008 | \n",
- " 2009 | \n",
- " 2010 | \n",
- " 2011 | \n",
- " 2012 | \n",
- " 2013 | \n",
- "
\n",
- " \n",
- " | Country | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Afghanistan | \n",
- " Afghanistan | \n",
- " 16 | \n",
- " 39 | \n",
- " 39 | \n",
- " 47 | \n",
- " 71 | \n",
- " 340 | \n",
- " 496 | \n",
- " 741 | \n",
- " 828 | \n",
- " ... | \n",
- " 2978 | \n",
- " 3436 | \n",
- " 3009 | \n",
- " 2652 | \n",
- " 2111 | \n",
- " 1746 | \n",
- " 1758 | \n",
- " 2203 | \n",
- " 2635 | \n",
- " 2004 | \n",
- "
\n",
- " \n",
- " | Albania | \n",
- " Albania | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 2 | \n",
- " 2 | \n",
- " ... | \n",
- " 1450 | \n",
- " 1223 | \n",
- " 856 | \n",
- " 702 | \n",
- " 560 | \n",
- " 716 | \n",
- " 561 | \n",
- " 539 | \n",
- " 620 | \n",
- " 603 | \n",
- "
\n",
- " \n",
- " | Algeria | \n",
- " Algeria | \n",
- " 80 | \n",
- " 67 | \n",
- " 71 | \n",
- " 69 | \n",
- " 63 | \n",
- " 44 | \n",
- " 69 | \n",
- " 132 | \n",
- " 242 | \n",
- " ... | \n",
- " 3616 | \n",
- " 3626 | \n",
- " 4807 | \n",
- " 3623 | \n",
- " 4005 | \n",
- " 5393 | \n",
- " 4752 | \n",
- " 4325 | \n",
- " 3774 | \n",
- " 4331 | \n",
- "
\n",
- " \n",
- " | American Samoa | \n",
- " American Samoa | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | Andorra | \n",
- " Andorra | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 2 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 35 columns
\n",
- "
"
- ],
- "text/plain": [
- " Country 1980 1981 1982 1983 1984 1985 1986 \\\n",
- "Country \n",
- "Afghanistan Afghanistan 16 39 39 47 71 340 496 \n",
- "Albania Albania 1 0 0 0 0 0 1 \n",
- "Algeria Algeria 80 67 71 69 63 44 69 \n",
- "American Samoa American Samoa 0 1 0 0 0 0 0 \n",
- "Andorra Andorra 0 0 0 0 0 0 2 \n",
- "\n",
- " 1987 1988 ... 2004 2005 2006 2007 2008 2009 2010 \\\n",
- "Country ... \n",
- "Afghanistan 741 828 ... 2978 3436 3009 2652 2111 1746 1758 \n",
- "Albania 2 2 ... 1450 1223 856 702 560 716 561 \n",
- "Algeria 132 242 ... 3616 3626 4807 3623 4005 5393 4752 \n",
- "American Samoa 1 0 ... 0 0 1 0 0 0 0 \n",
- "Andorra 0 0 ... 0 0 1 1 0 0 0 \n",
- "\n",
- " 2011 2012 2013 \n",
- "Country \n",
- "Afghanistan 2203 2635 2004 \n",
- "Albania 539 620 603 \n",
- "Algeria 4325 3774 4331 \n",
- "American Samoa 0 0 0 \n",
- "Andorra 0 1 1 \n",
- "\n",
- "[5 rows x 35 columns]"
- ]
- },
- "execution_count": 690,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "canada.rename(columns={'OdName':'Country'} , inplace=True)\n",
- "canada.set_index(canada.Country,inplace=True)\n",
- "canada.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 691,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Country | \n",
- " 1980 | \n",
- " 1981 | \n",
- " 1982 | \n",
- " 1983 | \n",
- " 1984 | \n",
- " 1985 | \n",
- " 1986 | \n",
- " 1987 | \n",
- " 1988 | \n",
- " ... | \n",
- " 2004 | \n",
- " 2005 | \n",
- " 2006 | \n",
- " 2007 | \n",
- " 2008 | \n",
- " 2009 | \n",
- " 2010 | \n",
- " 2011 | \n",
- " 2012 | \n",
- " 2013 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Afghanistan | \n",
- " Afghanistan | \n",
- " 16 | \n",
- " 39 | \n",
- " 39 | \n",
- " 47 | \n",
- " 71 | \n",
- " 340 | \n",
- " 496 | \n",
- " 741 | \n",
- " 828 | \n",
- " ... | \n",
- " 2978 | \n",
- " 3436 | \n",
- " 3009 | \n",
- " 2652 | \n",
- " 2111 | \n",
- " 1746 | \n",
- " 1758 | \n",
- " 2203 | \n",
- " 2635 | \n",
- " 2004 | \n",
- "
\n",
- " \n",
- " | Albania | \n",
- " Albania | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 2 | \n",
- " 2 | \n",
- " ... | \n",
- " 1450 | \n",
- " 1223 | \n",
- " 856 | \n",
- " 702 | \n",
- " 560 | \n",
- " 716 | \n",
- " 561 | \n",
- " 539 | \n",
- " 620 | \n",
- " 603 | \n",
- "
\n",
- " \n",
- " | Algeria | \n",
- " Algeria | \n",
- " 80 | \n",
- " 67 | \n",
- " 71 | \n",
- " 69 | \n",
- " 63 | \n",
- " 44 | \n",
- " 69 | \n",
- " 132 | \n",
- " 242 | \n",
- " ... | \n",
- " 3616 | \n",
- " 3626 | \n",
- " 4807 | \n",
- " 3623 | \n",
- " 4005 | \n",
- " 5393 | \n",
- " 4752 | \n",
- " 4325 | \n",
- " 3774 | \n",
- " 4331 | \n",
- "
\n",
- " \n",
- " | American Samoa | \n",
- " American Samoa | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | Andorra | \n",
- " Andorra | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 2 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 35 columns
\n",
- "
"
- ],
- "text/plain": [
- " Country 1980 1981 1982 1983 1984 1985 1986 \\\n",
- "Afghanistan Afghanistan 16 39 39 47 71 340 496 \n",
- "Albania Albania 1 0 0 0 0 0 1 \n",
- "Algeria Algeria 80 67 71 69 63 44 69 \n",
- "American Samoa American Samoa 0 1 0 0 0 0 0 \n",
- "Andorra Andorra 0 0 0 0 0 0 2 \n",
- "\n",
- " 1987 1988 ... 2004 2005 2006 2007 2008 2009 2010 \\\n",
- "Afghanistan 741 828 ... 2978 3436 3009 2652 2111 1746 1758 \n",
- "Albania 2 2 ... 1450 1223 856 702 560 716 561 \n",
- "Algeria 132 242 ... 3616 3626 4807 3623 4005 5393 4752 \n",
- "American Samoa 1 0 ... 0 0 1 0 0 0 0 \n",
- "Andorra 0 0 ... 0 0 1 1 0 0 0 \n",
- "\n",
- " 2011 2012 2013 \n",
- "Afghanistan 2203 2635 2004 \n",
- "Albania 539 620 603 \n",
- "Algeria 4325 3774 4331 \n",
- "American Samoa 0 0 0 \n",
- "Andorra 0 1 1 \n",
- "\n",
- "[5 rows x 35 columns]"
- ]
- },
- "execution_count": 691,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "canada.index.name=None\n",
- "canada.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 692,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " 1980 | \n",
- " 1981 | \n",
- " 1982 | \n",
- " 1983 | \n",
- " 1984 | \n",
- " 1985 | \n",
- " 1986 | \n",
- " 1987 | \n",
- " 1988 | \n",
- " 1989 | \n",
- " ... | \n",
- " 2004 | \n",
- " 2005 | \n",
- " 2006 | \n",
- " 2007 | \n",
- " 2008 | \n",
- " 2009 | \n",
- " 2010 | \n",
- " 2011 | \n",
- " 2012 | \n",
- " 2013 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Afghanistan | \n",
- " 16 | \n",
- " 39 | \n",
- " 39 | \n",
- " 47 | \n",
- " 71 | \n",
- " 340 | \n",
- " 496 | \n",
- " 741 | \n",
- " 828 | \n",
- " 1076 | \n",
- " ... | \n",
- " 2978 | \n",
- " 3436 | \n",
- " 3009 | \n",
- " 2652 | \n",
- " 2111 | \n",
- " 1746 | \n",
- " 1758 | \n",
- " 2203 | \n",
- " 2635 | \n",
- " 2004 | \n",
- "
\n",
- " \n",
- " | Albania | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 2 | \n",
- " 2 | \n",
- " 3 | \n",
- " ... | \n",
- " 1450 | \n",
- " 1223 | \n",
- " 856 | \n",
- " 702 | \n",
- " 560 | \n",
- " 716 | \n",
- " 561 | \n",
- " 539 | \n",
- " 620 | \n",
- " 603 | \n",
- "
\n",
- " \n",
- " | Algeria | \n",
- " 80 | \n",
- " 67 | \n",
- " 71 | \n",
- " 69 | \n",
- " 63 | \n",
- " 44 | \n",
- " 69 | \n",
- " 132 | \n",
- " 242 | \n",
- " 434 | \n",
- " ... | \n",
- " 3616 | \n",
- " 3626 | \n",
- " 4807 | \n",
- " 3623 | \n",
- " 4005 | \n",
- " 5393 | \n",
- " 4752 | \n",
- " 4325 | \n",
- " 3774 | \n",
- " 4331 | \n",
- "
\n",
- " \n",
- " | American Samoa | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 1 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " | Andorra | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 2 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 34 columns
\n",
- "
"
- ],
- "text/plain": [
- " 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 \\\n",
- "Afghanistan 16 39 39 47 71 340 496 741 828 1076 \n",
- "Albania 1 0 0 0 0 0 1 2 2 3 \n",
- "Algeria 80 67 71 69 63 44 69 132 242 434 \n",
- "American Samoa 0 1 0 0 0 0 0 1 0 1 \n",
- "Andorra 0 0 0 0 0 0 2 0 0 0 \n",
- "\n",
- " ... 2004 2005 2006 2007 2008 2009 2010 2011 2012 \\\n",
- "Afghanistan ... 2978 3436 3009 2652 2111 1746 1758 2203 2635 \n",
- "Albania ... 1450 1223 856 702 560 716 561 539 620 \n",
- "Algeria ... 3616 3626 4807 3623 4005 5393 4752 4325 3774 \n",
- "American Samoa ... 0 0 1 0 0 0 0 0 0 \n",
- "Andorra ... 0 0 1 1 0 0 0 0 1 \n",
- "\n",
- " 2013 \n",
- "Afghanistan 2004 \n",
- "Albania 603 \n",
- "Algeria 4331 \n",
- "American Samoa 0 \n",
- "Andorra 1 \n",
- "\n",
- "[5 rows x 34 columns]"
- ]
- },
- "execution_count": 692,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "del canada['Country']\n",
- "canada.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 693,
- "metadata": {},
- "outputs": [],
- "source": [
- "canada = canada.transpose()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 694,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Afghanistan | \n",
- " Albania | \n",
- " Algeria | \n",
- " American Samoa | \n",
- " Andorra | \n",
- " Angola | \n",
- " Antigua and Barbuda | \n",
- " Argentina | \n",
- " Armenia | \n",
- " Australia | \n",
- " ... | \n",
- " Uzbekistan | \n",
- " Vanuatu | \n",
- " Venezuela (Bolivarian Republic of) | \n",
- " Viet Nam | \n",
- " Western Sahara | \n",
- " Yemen | \n",
- " Zambia | \n",
- " Zimbabwe | \n",
- " Unknown | \n",
- " Total | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 1980 | \n",
- " 16 | \n",
- " 1 | \n",
- " 80 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 368 | \n",
- " 0 | \n",
- " 702 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 103 | \n",
- " 1191 | \n",
- " 0 | \n",
- " 1 | \n",
- " 11 | \n",
- " 72 | \n",
- " 44000 | \n",
- " 143137 | \n",
- "
\n",
- " \n",
- " | 1981 | \n",
- " 39 | \n",
- " 0 | \n",
- " 67 | \n",
- " 1 | \n",
- " 0 | \n",
- " 3 | \n",
- " 0 | \n",
- " 426 | \n",
- " 0 | \n",
- " 639 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 117 | \n",
- " 1829 | \n",
- " 0 | \n",
- " 2 | \n",
- " 17 | \n",
- " 114 | \n",
- " 18078 | \n",
- " 128641 | \n",
- "
\n",
- " \n",
- " | 1982 | \n",
- " 39 | \n",
- " 0 | \n",
- " 71 | \n",
- " 0 | \n",
- " 0 | \n",
- " 6 | \n",
- " 0 | \n",
- " 626 | \n",
- " 0 | \n",
- " 484 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 174 | \n",
- " 2162 | \n",
- " 0 | \n",
- " 1 | \n",
- " 11 | \n",
- " 102 | \n",
- " 16904 | \n",
- " 121175 | \n",
- "
\n",
- " \n",
- " | 1983 | \n",
- " 47 | \n",
- " 0 | \n",
- " 69 | \n",
- " 0 | \n",
- " 0 | \n",
- " 6 | \n",
- " 0 | \n",
- " 241 | \n",
- " 0 | \n",
- " 317 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 124 | \n",
- " 3404 | \n",
- " 0 | \n",
- " 6 | \n",
- " 7 | \n",
- " 44 | \n",
- " 13635 | \n",
- " 89185 | \n",
- "
\n",
- " \n",
- " | 1984 | \n",
- " 71 | \n",
- " 0 | \n",
- " 63 | \n",
- " 0 | \n",
- " 0 | \n",
- " 4 | \n",
- " 42 | \n",
- " 237 | \n",
- " 0 | \n",
- " 317 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 142 | \n",
- " 7583 | \n",
- " 0 | \n",
- " 0 | \n",
- " 16 | \n",
- " 32 | \n",
- " 14855 | \n",
- " 88272 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 197 columns
\n",
- "
"
- ],
- "text/plain": [
- " Afghanistan Albania Algeria American Samoa Andorra Angola \\\n",
- "1980 16 1 80 0 0 1 \n",
- "1981 39 0 67 1 0 3 \n",
- "1982 39 0 71 0 0 6 \n",
- "1983 47 0 69 0 0 6 \n",
- "1984 71 0 63 0 0 4 \n",
- "\n",
- " Antigua and Barbuda Argentina Armenia Australia ... Uzbekistan \\\n",
- "1980 0 368 0 702 ... 0 \n",
- "1981 0 426 0 639 ... 0 \n",
- "1982 0 626 0 484 ... 0 \n",
- "1983 0 241 0 317 ... 0 \n",
- "1984 42 237 0 317 ... 0 \n",
- "\n",
- " Vanuatu Venezuela (Bolivarian Republic of) Viet Nam Western Sahara \\\n",
- "1980 0 103 1191 0 \n",
- "1981 0 117 1829 0 \n",
- "1982 0 174 2162 0 \n",
- "1983 0 124 3404 0 \n",
- "1984 0 142 7583 0 \n",
- "\n",
- " Yemen Zambia Zimbabwe Unknown Total \n",
- "1980 1 11 72 44000 143137 \n",
- "1981 2 17 114 18078 128641 \n",
- "1982 1 11 102 16904 121175 \n",
- "1983 6 7 44 13635 89185 \n",
- "1984 0 16 32 14855 88272 \n",
- "\n",
- "[5 rows x 197 columns]"
- ]
- },
- "execution_count": 694,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "canada.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 695,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Country | \n",
- " Year | \n",
- " Status | \n",
- " Life expectancy | \n",
- " Adult Mortality | \n",
- " infant deaths | \n",
- " Alcohol | \n",
- " percentage expenditure | \n",
- " Hepatitis B | \n",
- " Measles | \n",
- " ... | \n",
- " Polio | \n",
- " Total expenditure | \n",
- " Diphtheria | \n",
- " HIV/AIDS | \n",
- " GDP | \n",
- " Population | \n",
- " thinness 1-19 years | \n",
- " thinness 5-9 years | \n",
- " Income composition of resources | \n",
- " Schooling | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " Afghanistan | \n",
- " 2015 | \n",
- " Developing | \n",
- " 65.0 | \n",
- " 263.0 | \n",
- " 62 | \n",
- " 0.01 | \n",
- " 71.279624 | \n",
- " 65.0 | \n",
- " 1154 | \n",
- " ... | \n",
- " 6.0 | \n",
- " 8.16 | \n",
- " 65.0 | \n",
- " 0.1 | \n",
- " 584.259210 | \n",
- " 33736494.0 | \n",
- " 17.2 | \n",
- " 17.3 | \n",
- " 0.479 | \n",
- " 10.1 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " Afghanistan | \n",
- " 2014 | \n",
- " Developing | \n",
- " 59.9 | \n",
- " 271.0 | \n",
- " 64 | \n",
- " 0.01 | \n",
- " 73.523582 | \n",
- " 62.0 | \n",
- " 492 | \n",
- " ... | \n",
- " 58.0 | \n",
- " 8.18 | \n",
- " 62.0 | \n",
- " 0.1 | \n",
- " 612.696514 | \n",
- " 327582.0 | \n",
- " 17.5 | \n",
- " 17.5 | \n",
- " 0.476 | \n",
- " 10.0 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " Afghanistan | \n",
- " 2013 | \n",
- " Developing | \n",
- " 59.9 | \n",
- " 268.0 | \n",
- " 66 | \n",
- " 0.01 | \n",
- " 73.219243 | \n",
- " 64.0 | \n",
- " 430 | \n",
- " ... | \n",
- " 62.0 | \n",
- " 8.13 | \n",
- " 64.0 | \n",
- " 0.1 | \n",
- " 631.744976 | \n",
- " 31731688.0 | \n",
- " 17.7 | \n",
- " 17.7 | \n",
- " 0.470 | \n",
- " 9.9 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " Afghanistan | \n",
- " 2012 | \n",
- " Developing | \n",
- " 59.5 | \n",
- " 272.0 | \n",
- " 69 | \n",
- " 0.01 | \n",
- " 78.184215 | \n",
- " 67.0 | \n",
- " 2787 | \n",
- " ... | \n",
- " 67.0 | \n",
- " 8.52 | \n",
- " 67.0 | \n",
- " 0.1 | \n",
- " 669.959000 | \n",
- " 3696958.0 | \n",
- " 17.9 | \n",
- " 18.0 | \n",
- " 0.463 | \n",
- " 9.8 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " Afghanistan | \n",
- " 2011 | \n",
- " Developing | \n",
- " 59.2 | \n",
- " 275.0 | \n",
- " 71 | \n",
- " 0.01 | \n",
- " 7.097109 | \n",
- " 68.0 | \n",
- " 3013 | \n",
- " ... | \n",
- " 68.0 | \n",
- " 7.87 | \n",
- " 68.0 | \n",
- " 0.1 | \n",
- " 63.537231 | \n",
- " 2978599.0 | \n",
- " 18.2 | \n",
- " 18.2 | \n",
- " 0.454 | \n",
- " 9.5 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 22 columns
\n",
- "
"
- ],
- "text/plain": [
- " Country Year Status Life expectancy Adult Mortality \\\n",
- "0 Afghanistan 2015 Developing 65.0 263.0 \n",
- "1 Afghanistan 2014 Developing 59.9 271.0 \n",
- "2 Afghanistan 2013 Developing 59.9 268.0 \n",
- "3 Afghanistan 2012 Developing 59.5 272.0 \n",
- "4 Afghanistan 2011 Developing 59.2 275.0 \n",
- "\n",
- " infant deaths Alcohol percentage expenditure Hepatitis B Measles \\\n",
- "0 62 0.01 71.279624 65.0 1154 \n",
- "1 64 0.01 73.523582 62.0 492 \n",
- "2 66 0.01 73.219243 64.0 430 \n",
- "3 69 0.01 78.184215 67.0 2787 \n",
- "4 71 0.01 7.097109 68.0 3013 \n",
- "\n",
- " ... Polio Total expenditure Diphtheria HIV/AIDS GDP \\\n",
- "0 ... 6.0 8.16 65.0 0.1 584.259210 \n",
- "1 ... 58.0 8.18 62.0 0.1 612.696514 \n",
- "2 ... 62.0 8.13 64.0 0.1 631.744976 \n",
- "3 ... 67.0 8.52 67.0 0.1 669.959000 \n",
- "4 ... 68.0 7.87 68.0 0.1 63.537231 \n",
- "\n",
- " Population thinness 1-19 years thinness 5-9 years \\\n",
- "0 33736494.0 17.2 17.3 \n",
- "1 327582.0 17.5 17.5 \n",
- "2 31731688.0 17.7 17.7 \n",
- "3 3696958.0 17.9 18.0 \n",
- "4 2978599.0 18.2 18.2 \n",
- "\n",
- " Income composition of resources Schooling \n",
- "0 0.479 10.1 \n",
- "1 0.476 10.0 \n",
- "2 0.470 9.9 \n",
- "3 0.463 9.8 \n",
- "4 0.454 9.5 \n",
- "\n",
- "[5 rows x 22 columns]"
- ]
- },
- "execution_count": 695,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "led = pd.read_csv(\"Life Expectancy Data.csv\")\n",
- "led.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 696,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " age | \n",
- " workclass | \n",
- " fnlwgt | \n",
- " education | \n",
- " education.num | \n",
- " marital.status | \n",
- " occupation | \n",
- " relationship | \n",
- " race | \n",
- " sex | \n",
- " capital.gain | \n",
- " capital.loss | \n",
- " hours.per.week | \n",
- " native.country | \n",
- " income | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 90 | \n",
- " ? | \n",
- " 77053 | \n",
- " HS-grad | \n",
- " 9 | \n",
- " Widowed | \n",
- " ? | \n",
- " Not-in-family | \n",
- " White | \n",
- " Female | \n",
- " 0 | \n",
- " 4356 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 82 | \n",
- " Private | \n",
- " 132870 | \n",
- " HS-grad | \n",
- " 9 | \n",
- " Widowed | \n",
- " Exec-managerial | \n",
- " Not-in-family | \n",
- " White | \n",
- " Female | \n",
- " 0 | \n",
- " 4356 | \n",
- " 18 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 66 | \n",
- " ? | \n",
- " 186061 | \n",
- " Some-college | \n",
- " 10 | \n",
- " Widowed | \n",
- " ? | \n",
- " Unmarried | \n",
- " Black | \n",
- " Female | \n",
- " 0 | \n",
- " 4356 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 54 | \n",
- " Private | \n",
- " 140359 | \n",
- " 7th-8th | \n",
- " 4 | \n",
- " Divorced | \n",
- " Machine-op-inspct | \n",
- " Unmarried | \n",
- " White | \n",
- " Female | \n",
- " 0 | \n",
- " 3900 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 41 | \n",
- " Private | \n",
- " 264663 | \n",
- " Some-college | \n",
- " 10 | \n",
- " Separated | \n",
- " Prof-specialty | \n",
- " Own-child | \n",
- " White | \n",
- " Female | \n",
- " 0 | \n",
- " 3900 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 34 | \n",
- " Private | \n",
- " 216864 | \n",
- " HS-grad | \n",
- " 9 | \n",
- " Divorced | \n",
- " Other-service | \n",
- " Unmarried | \n",
- " White | \n",
- " Female | \n",
- " 0 | \n",
- " 3770 | \n",
- " 45 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " 38 | \n",
- " Private | \n",
- " 150601 | \n",
- " 10th | \n",
- " 6 | \n",
- " Separated | \n",
- " Adm-clerical | \n",
- " Unmarried | \n",
- " White | \n",
- " Male | \n",
- " 0 | \n",
- " 3770 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " 74 | \n",
- " State-gov | \n",
- " 88638 | \n",
- " Doctorate | \n",
- " 16 | \n",
- " Never-married | \n",
- " Prof-specialty | \n",
- " Other-relative | \n",
- " White | \n",
- " Female | \n",
- " 0 | \n",
- " 3683 | \n",
- " 20 | \n",
- " United-States | \n",
- " >50K | \n",
- "
\n",
- " \n",
- " | 8 | \n",
- " 68 | \n",
- " Federal-gov | \n",
- " 422013 | \n",
- " HS-grad | \n",
- " 9 | \n",
- " Divorced | \n",
- " Prof-specialty | \n",
- " Not-in-family | \n",
- " White | \n",
- " Female | \n",
- " 0 | \n",
- " 3683 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 9 | \n",
- " 41 | \n",
- " Private | \n",
- " 70037 | \n",
- " Some-college | \n",
- " 10 | \n",
- " Never-married | \n",
- " Craft-repair | \n",
- " Unmarried | \n",
- " White | \n",
- " Male | \n",
- " 0 | \n",
- " 3004 | \n",
- " 60 | \n",
- " ? | \n",
- " >50K | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " age workclass fnlwgt education education.num marital.status \\\n",
- "0 90 ? 77053 HS-grad 9 Widowed \n",
- "1 82 Private 132870 HS-grad 9 Widowed \n",
- "2 66 ? 186061 Some-college 10 Widowed \n",
- "3 54 Private 140359 7th-8th 4 Divorced \n",
- "4 41 Private 264663 Some-college 10 Separated \n",
- "5 34 Private 216864 HS-grad 9 Divorced \n",
- "6 38 Private 150601 10th 6 Separated \n",
- "7 74 State-gov 88638 Doctorate 16 Never-married \n",
- "8 68 Federal-gov 422013 HS-grad 9 Divorced \n",
- "9 41 Private 70037 Some-college 10 Never-married \n",
- "\n",
- " occupation relationship race sex capital.gain \\\n",
- "0 ? Not-in-family White Female 0 \n",
- "1 Exec-managerial Not-in-family White Female 0 \n",
- "2 ? Unmarried Black Female 0 \n",
- "3 Machine-op-inspct Unmarried White Female 0 \n",
- "4 Prof-specialty Own-child White Female 0 \n",
- "5 Other-service Unmarried White Female 0 \n",
- "6 Adm-clerical Unmarried White Male 0 \n",
- "7 Prof-specialty Other-relative White Female 0 \n",
- "8 Prof-specialty Not-in-family White Female 0 \n",
- "9 Craft-repair Unmarried White Male 0 \n",
- "\n",
- " capital.loss hours.per.week native.country income \n",
- "0 4356 40 United-States <=50K \n",
- "1 4356 18 United-States <=50K \n",
- "2 4356 40 United-States <=50K \n",
- "3 3900 40 United-States <=50K \n",
- "4 3900 40 United-States <=50K \n",
- "5 3770 45 United-States <=50K \n",
- "6 3770 40 United-States <=50K \n",
- "7 3683 20 United-States >50K \n",
- "8 3683 40 United-States <=50K \n",
- "9 3004 60 ? >50K "
- ]
- },
- "execution_count": 696,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "adult = pd.read_csv(\"adult.csv\")\n",
- "adult.head(10)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 697,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " age | \n",
- " workclass | \n",
- " fnlwgt | \n",
- " education | \n",
- " education.num | \n",
- " marital.status | \n",
- " occupation | \n",
- " relationship | \n",
- " race | \n",
- " sex | \n",
- " capital.gain | \n",
- " capital.loss | \n",
- " hours.per.week | \n",
- " native.country | \n",
- " income | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 1 | \n",
- " 82 | \n",
- " Private | \n",
- " 132870 | \n",
- " HS-grad | \n",
- " 9 | \n",
- " Widowed | \n",
- " Exec-managerial | \n",
- " Not-in-family | \n",
- " White | \n",
- " Female | \n",
- " 0 | \n",
- " 4356 | \n",
- " 18 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 54 | \n",
- " Private | \n",
- " 140359 | \n",
- " 7th-8th | \n",
- " 4 | \n",
- " Divorced | \n",
- " Machine-op-inspct | \n",
- " Unmarried | \n",
- " White | \n",
- " Female | \n",
- " 0 | \n",
- " 3900 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 41 | \n",
- " Private | \n",
- " 264663 | \n",
- " Some-college | \n",
- " 10 | \n",
- " Separated | \n",
- " Prof-specialty | \n",
- " Own-child | \n",
- " White | \n",
- " Female | \n",
- " 0 | \n",
- " 3900 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 34 | \n",
- " Private | \n",
- " 216864 | \n",
- " HS-grad | \n",
- " 9 | \n",
- " Divorced | \n",
- " Other-service | \n",
- " Unmarried | \n",
- " White | \n",
- " Female | \n",
- " 0 | \n",
- " 3770 | \n",
- " 45 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " 38 | \n",
- " Private | \n",
- " 150601 | \n",
- " 10th | \n",
- " 6 | \n",
- " Separated | \n",
- " Adm-clerical | \n",
- " Unmarried | \n",
- " White | \n",
- " Male | \n",
- " 0 | \n",
- " 3770 | \n",
- " 40 | \n",
- " United-States | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " age workclass fnlwgt education education.num marital.status \\\n",
- "1 82 Private 132870 HS-grad 9 Widowed \n",
- "3 54 Private 140359 7th-8th 4 Divorced \n",
- "4 41 Private 264663 Some-college 10 Separated \n",
- "5 34 Private 216864 HS-grad 9 Divorced \n",
- "6 38 Private 150601 10th 6 Separated \n",
- "\n",
- " occupation relationship race sex capital.gain \\\n",
- "1 Exec-managerial Not-in-family White Female 0 \n",
- "3 Machine-op-inspct Unmarried White Female 0 \n",
- "4 Prof-specialty Own-child White Female 0 \n",
- "5 Other-service Unmarried White Female 0 \n",
- "6 Adm-clerical Unmarried White Male 0 \n",
- "\n",
- " capital.loss hours.per.week native.country income \n",
- "1 4356 18 United-States <=50K \n",
- "3 3900 40 United-States <=50K \n",
- "4 3900 40 United-States <=50K \n",
- "5 3770 45 United-States <=50K \n",
- "6 3770 40 United-States <=50K "
- ]
- },
- "execution_count": 697,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "adult = adult[adult[\"workclass\"].isin (['Private', 'State-gov', 'Federal-gov'])]\n",
- "adult.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 698,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " sepal_length | \n",
- " sepal_width | \n",
- " petal_length | \n",
- " petal_width | \n",
- " species | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 5.1 | \n",
- " 3.5 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 4.9 | \n",
- " 3.0 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 4.7 | \n",
- " 3.2 | \n",
- " 1.3 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 4.6 | \n",
- " 3.1 | \n",
- " 1.5 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 5.0 | \n",
- " 3.6 | \n",
- " 1.4 | \n",
- " 0.2 | \n",
- " setosa | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " sepal_length sepal_width petal_length petal_width species\n",
- "0 5.1 3.5 1.4 0.2 setosa\n",
- "1 4.9 3.0 1.4 0.2 setosa\n",
- "2 4.7 3.2 1.3 0.2 setosa\n",
- "3 4.6 3.1 1.5 0.2 setosa\n",
- "4 5.0 3.6 1.4 0.2 setosa"
- ]
- },
- "execution_count": 698,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "iris = sns.load_dataset(\"iris\")\n",
- "iris.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 700,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " mpg | \n",
- " cylinders | \n",
- " cubicinches | \n",
- " hp | \n",
- " weightlbs | \n",
- " time-to-60 | \n",
- " year | \n",
- " brand | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 14.0 | \n",
- " 8 | \n",
- " 350 | \n",
- " 165 | \n",
- " 4209 | \n",
- " 12 | \n",
- " 1972 | \n",
- " US. | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 31.9 | \n",
- " 4 | \n",
- " 89 | \n",
- " 71 | \n",
- " 1925 | \n",
- " 14 | \n",
- " 1980 | \n",
- " Europe. | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 17.0 | \n",
- " 8 | \n",
- " 302 | \n",
- " 140 | \n",
- " 3449 | \n",
- " 11 | \n",
- " 1971 | \n",
- " US. | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 15.0 | \n",
- " 8 | \n",
- " 400 | \n",
- " 150 | \n",
- " 3761 | \n",
- " 10 | \n",
- " 1971 | \n",
- " US. | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 30.5 | \n",
- " 4 | \n",
- " 98 | \n",
- " 63 | \n",
- " 2051 | \n",
- " 17 | \n",
- " 1978 | \n",
- " US. | \n",
- "
\n",
- " \n",
- " | 5 | \n",
- " 23.0 | \n",
- " 8 | \n",
- " 350 | \n",
- " 125 | \n",
- " 3900 | \n",
- " 17 | \n",
- " 1980 | \n",
- " US. | \n",
- "
\n",
- " \n",
- " | 6 | \n",
- " 13.0 | \n",
- " 8 | \n",
- " 351 | \n",
- " 158 | \n",
- " 4363 | \n",
- " 13 | \n",
- " 1974 | \n",
- " US. | \n",
- "
\n",
- " \n",
- " | 7 | \n",
- " 14.0 | \n",
- " 8 | \n",
- " 440 | \n",
- " 215 | \n",
- " 4312 | \n",
- " 9 | \n",
- " 1971 | \n",
- " US. | \n",
- "
\n",
- " \n",
- " | 8 | \n",
- " 25.4 | \n",
- " 5 | \n",
- " 183 | \n",
- " 77 | \n",
- " 3530 | \n",
- " 20 | \n",
- " 1980 | \n",
- " Europe. | \n",
- "
\n",
- " \n",
- " | 9 | \n",
- " 37.7 | \n",
- " 4 | \n",
- " 89 | \n",
- " 62 | \n",
- " 2050 | \n",
- " 17 | \n",
- " 1982 | \n",
- " Japan. | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " mpg cylinders cubicinches hp weightlbs time-to-60 year brand\n",
- "0 14.0 8 350 165 4209 12 1972 US.\n",
- "1 31.9 4 89 71 1925 14 1980 Europe.\n",
- "2 17.0 8 302 140 3449 11 1971 US.\n",
- "3 15.0 8 400 150 3761 10 1971 US.\n",
- "4 30.5 4 98 63 2051 17 1978 US.\n",
- "5 23.0 8 350 125 3900 17 1980 US.\n",
- "6 13.0 8 351 158 4363 13 1974 US.\n",
- "7 14.0 8 440 215 4312 9 1971 US.\n",
- "8 25.4 5 183 77 3530 20 1980 Europe.\n",
- "9 37.7 4 89 62 2050 17 1982 Japan."
- ]
- },
- "execution_count": 700,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "cars = pd.read_csv(\"cars.csv\")\n",
- "cars.head(10)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.0"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}