diff --git a/Seaborn/.ipynb_checkpoints/1. Loading Datasets-checkpoint.ipynb b/Seaborn/.ipynb_checkpoints/1. Loading Datasets-checkpoint.ipynb
new file mode 100644
index 0000000..23aa8c9
--- /dev/null
+++ b/Seaborn/.ipynb_checkpoints/1. Loading Datasets-checkpoint.ipynb
@@ -0,0 +1,4256 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
Prepared by Asif Bhat
\n",
+ " \n",
+ "
Data Visualization With Seaborn
\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ "\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 674,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import seaborn as sns\n",
+ "import matplotlib as mpl"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Loading Datasets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 675,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " # | \n",
+ " Name | \n",
+ " Type 1 | \n",
+ " Type 2 | \n",
+ " HP | \n",
+ " Attack | \n",
+ " Defense | \n",
+ " Sp. Atk | \n",
+ " Sp. Def | \n",
+ " Speed | \n",
+ " Generation | \n",
+ " Legendary | \n",
+ " Total | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " Bulbasaur | \n",
+ " Grass | \n",
+ " Poison | \n",
+ " 45 | \n",
+ " 49 | \n",
+ " 49 | \n",
+ " 65 | \n",
+ " 65 | \n",
+ " 45 | \n",
+ " 1 | \n",
+ " False | \n",
+ " 318 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " Ivysaur | \n",
+ " Grass | \n",
+ " Poison | \n",
+ " 60 | \n",
+ " 62 | \n",
+ " 63 | \n",
+ " 80 | \n",
+ " 80 | \n",
+ " 60 | \n",
+ " 1 | \n",
+ " False | \n",
+ " 405 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " Venusaur | \n",
+ " Grass | \n",
+ " Poison | \n",
+ " 80 | \n",
+ " 82 | \n",
+ " 83 | \n",
+ " 100 | \n",
+ " 100 | \n",
+ " 80 | \n",
+ " 1 | \n",
+ " False | \n",
+ " 525 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 3 | \n",
+ " VenusaurMega Venusaur | \n",
+ " Grass | \n",
+ " Poison | \n",
+ " 80 | \n",
+ " 100 | \n",
+ " 123 | \n",
+ " 122 | \n",
+ " 120 | \n",
+ " 80 | \n",
+ " 1 | \n",
+ " False | \n",
+ " 625 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 4 | \n",
+ " Charmander | \n",
+ " Fire | \n",
+ " NaN | \n",
+ " 39 | \n",
+ " 52 | \n",
+ " 43 | \n",
+ " 60 | \n",
+ " 50 | \n",
+ " 65 | \n",
+ " 1 | \n",
+ " False | \n",
+ " 309 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 5 | \n",
+ " Charmeleon | \n",
+ " Fire | \n",
+ " NaN | \n",
+ " 58 | \n",
+ " 64 | \n",
+ " 58 | \n",
+ " 80 | \n",
+ " 65 | \n",
+ " 80 | \n",
+ " 1 | \n",
+ " False | \n",
+ " 405 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 6 | \n",
+ " Charizard | \n",
+ " Fire | \n",
+ " Flying | \n",
+ " 78 | \n",
+ " 84 | \n",
+ " 78 | \n",
+ " 109 | \n",
+ " 85 | \n",
+ " 100 | \n",
+ " 1 | \n",
+ " False | \n",
+ " 534 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 6 | \n",
+ " CharizardMega Charizard X | \n",
+ " Fire | \n",
+ " Dragon | \n",
+ " 78 | \n",
+ " 130 | \n",
+ " 111 | \n",
+ " 130 | \n",
+ " 85 | \n",
+ " 100 | \n",
+ " 1 | \n",
+ " False | \n",
+ " 634 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 6 | \n",
+ " CharizardMega Charizard Y | \n",
+ " Fire | \n",
+ " Flying | \n",
+ " 78 | \n",
+ " 104 | \n",
+ " 78 | \n",
+ " 159 | \n",
+ " 115 | \n",
+ " 100 | \n",
+ " 1 | \n",
+ " False | \n",
+ " 634 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 7 | \n",
+ " Squirtle | \n",
+ " Water | \n",
+ " NaN | \n",
+ " 44 | \n",
+ " 48 | \n",
+ " 65 | \n",
+ " 50 | \n",
+ " 64 | \n",
+ " 43 | \n",
+ " 1 | \n",
+ " False | \n",
+ " 314 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " # Name Type 1 Type 2 HP Attack Defense Sp. Atk \\\n",
+ "0 1 Bulbasaur Grass Poison 45 49 49 65 \n",
+ "1 2 Ivysaur Grass Poison 60 62 63 80 \n",
+ "2 3 Venusaur Grass Poison 80 82 83 100 \n",
+ "3 3 VenusaurMega Venusaur Grass Poison 80 100 123 122 \n",
+ "4 4 Charmander Fire NaN 39 52 43 60 \n",
+ "5 5 Charmeleon Fire NaN 58 64 58 80 \n",
+ "6 6 Charizard Fire Flying 78 84 78 109 \n",
+ "7 6 CharizardMega Charizard X Fire Dragon 78 130 111 130 \n",
+ "8 6 CharizardMega Charizard Y Fire Flying 78 104 78 159 \n",
+ "9 7 Squirtle Water NaN 44 48 65 50 \n",
+ "\n",
+ " Sp. Def Speed Generation Legendary Total \n",
+ "0 65 45 1 False 318 \n",
+ "1 80 60 1 False 405 \n",
+ "2 100 80 1 False 525 \n",
+ "3 120 80 1 False 625 \n",
+ "4 50 65 1 False 309 \n",
+ "5 65 80 1 False 405 \n",
+ "6 85 100 1 False 534 \n",
+ "7 85 100 1 False 634 \n",
+ "8 115 100 1 False 634 \n",
+ "9 64 43 1 False 314 "
+ ]
+ },
+ "execution_count": 675,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pokemon = pd.read_csv(\"pokemon_updated.csv\")\n",
+ "pokemon.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 676,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " gender | \n",
+ " race/ethnicity | \n",
+ " parental level of education | \n",
+ " lunch | \n",
+ " test preparation course | \n",
+ " math score | \n",
+ " reading score | \n",
+ " writing score | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " female | \n",
+ " group B | \n",
+ " bachelor's degree | \n",
+ " standard | \n",
+ " none | \n",
+ " 72 | \n",
+ " 72 | \n",
+ " 74 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " female | \n",
+ " group C | \n",
+ " some college | \n",
+ " standard | \n",
+ " completed | \n",
+ " 69 | \n",
+ " 90 | \n",
+ " 88 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " female | \n",
+ " group B | \n",
+ " master's degree | \n",
+ " standard | \n",
+ " none | \n",
+ " 90 | \n",
+ " 95 | \n",
+ " 93 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " male | \n",
+ " group A | \n",
+ " associate's degree | \n",
+ " free/reduced | \n",
+ " none | \n",
+ " 47 | \n",
+ " 57 | \n",
+ " 44 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " male | \n",
+ " group C | \n",
+ " some college | \n",
+ " standard | \n",
+ " none | \n",
+ " 76 | \n",
+ " 78 | \n",
+ " 75 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " female | \n",
+ " group B | \n",
+ " associate's degree | \n",
+ " standard | \n",
+ " none | \n",
+ " 71 | \n",
+ " 83 | \n",
+ " 78 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " female | \n",
+ " group B | \n",
+ " some college | \n",
+ " standard | \n",
+ " completed | \n",
+ " 88 | \n",
+ " 95 | \n",
+ " 92 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " male | \n",
+ " group B | \n",
+ " some college | \n",
+ " free/reduced | \n",
+ " none | \n",
+ " 40 | \n",
+ " 43 | \n",
+ " 39 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " male | \n",
+ " group D | \n",
+ " high school | \n",
+ " free/reduced | \n",
+ " completed | \n",
+ " 64 | \n",
+ " 64 | \n",
+ " 67 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " female | \n",
+ " group B | \n",
+ " high school | \n",
+ " free/reduced | \n",
+ " none | \n",
+ " 38 | \n",
+ " 60 | \n",
+ " 50 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " gender race/ethnicity parental level of education lunch \\\n",
+ "0 female group B bachelor's degree standard \n",
+ "1 female group C some college standard \n",
+ "2 female group B master's degree standard \n",
+ "3 male group A associate's degree free/reduced \n",
+ "4 male group C some college standard \n",
+ "5 female group B associate's degree standard \n",
+ "6 female group B some college standard \n",
+ "7 male group B some college free/reduced \n",
+ "8 male group D high school free/reduced \n",
+ "9 female group B high school free/reduced \n",
+ "\n",
+ " test preparation course math score reading score writing score \n",
+ "0 none 72 72 74 \n",
+ "1 completed 69 90 88 \n",
+ "2 none 90 95 93 \n",
+ "3 none 47 57 44 \n",
+ "4 none 76 78 75 \n",
+ "5 none 71 83 78 \n",
+ "6 completed 88 95 92 \n",
+ "7 none 40 43 39 \n",
+ "8 completed 64 64 67 \n",
+ "9 none 38 60 50 "
+ ]
+ },
+ "execution_count": 676,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "stdperf = pd.read_csv(\"studentp.csv\")\n",
+ "stdperf.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 677,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Country | \n",
+ " Confirmed | \n",
+ " Recovered | \n",
+ " Deaths | \n",
+ "
\n",
+ " \n",
+ " | Date | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 2020-01-22 | \n",
+ " Afghanistan | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2020-01-22 | \n",
+ " Albania | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2020-01-22 | \n",
+ " Algeria | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2020-01-22 | \n",
+ " Andorra | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2020-01-22 | \n",
+ " Angola | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2020-01-22 | \n",
+ " Antigua and Barbuda | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2020-01-22 | \n",
+ " Argentina | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2020-01-22 | \n",
+ " Armenia | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2020-01-22 | \n",
+ " Australia | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2020-01-22 | \n",
+ " Austria | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Country Confirmed Recovered Deaths\n",
+ "Date \n",
+ "2020-01-22 Afghanistan 0 0 0\n",
+ "2020-01-22 Albania 0 0 0\n",
+ "2020-01-22 Algeria 0 0 0\n",
+ "2020-01-22 Andorra 0 0 0\n",
+ "2020-01-22 Angola 0 0 0\n",
+ "2020-01-22 Antigua and Barbuda 0 0 0\n",
+ "2020-01-22 Argentina 0 0 0\n",
+ "2020-01-22 Armenia 0 0 0\n",
+ "2020-01-22 Australia 0 0 0\n",
+ "2020-01-22 Austria 0 0 0"
+ ]
+ },
+ "execution_count": 677,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "corona = pd.read_csv('C:/Users/DELL/Documents/GitHub/Public/COVID-19/covid/data/countries-aggregated.csv' ,\n",
+ " index_col='Date' , parse_dates=True)\n",
+ "corona.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 678,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Shape of You | \n",
+ " Despacito | \n",
+ " Something Just Like This | \n",
+ " HUMBLE. | \n",
+ " Unforgettable | \n",
+ "
\n",
+ " \n",
+ " | Date | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 2017-01-06 | \n",
+ " 12287078 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2017-01-07 | \n",
+ " 13190270 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2017-01-08 | \n",
+ " 13099919 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2017-01-09 | \n",
+ " 14506351 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2017-01-10 | \n",
+ " 14275628 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2017-01-11 | \n",
+ " 14372699 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2017-01-12 | \n",
+ " 14148108 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2017-01-13 | \n",
+ " 14536236 | \n",
+ " 275178.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2017-01-14 | \n",
+ " 14173311 | \n",
+ " 1144886.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2017-01-15 | \n",
+ " 12889849 | \n",
+ " 1288198.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Shape of You Despacito Something Just Like This HUMBLE. \\\n",
+ "Date \n",
+ "2017-01-06 12287078 NaN NaN NaN \n",
+ "2017-01-07 13190270 NaN NaN NaN \n",
+ "2017-01-08 13099919 NaN NaN NaN \n",
+ "2017-01-09 14506351 NaN NaN NaN \n",
+ "2017-01-10 14275628 NaN NaN NaN \n",
+ "2017-01-11 14372699 NaN NaN NaN \n",
+ "2017-01-12 14148108 NaN NaN NaN \n",
+ "2017-01-13 14536236 275178.0 NaN NaN \n",
+ "2017-01-14 14173311 1144886.0 NaN NaN \n",
+ "2017-01-15 12889849 1288198.0 NaN NaN \n",
+ "\n",
+ " Unforgettable \n",
+ "Date \n",
+ "2017-01-06 NaN \n",
+ "2017-01-07 NaN \n",
+ "2017-01-08 NaN \n",
+ "2017-01-09 NaN \n",
+ "2017-01-10 NaN \n",
+ "2017-01-11 NaN \n",
+ "2017-01-12 NaN \n",
+ "2017-01-13 NaN \n",
+ "2017-01-14 NaN \n",
+ "2017-01-15 NaN "
+ ]
+ },
+ "execution_count": 678,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "spotify = pd.read_csv(\"spotify.csv\" , index_col=\"Date\")\n",
+ "spotify.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 679,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " longitude | \n",
+ " latitude | \n",
+ " housing_median_age | \n",
+ " total_rooms | \n",
+ " total_bedrooms | \n",
+ " population | \n",
+ " households | \n",
+ " median_income | \n",
+ " median_house_value | \n",
+ " ocean_proximity | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 20635 | \n",
+ " -121.09 | \n",
+ " 39.48 | \n",
+ " 25.0 | \n",
+ " 1665.0 | \n",
+ " 374.0 | \n",
+ " 845.0 | \n",
+ " 330.0 | \n",
+ " 1.5603 | \n",
+ " 78100.0 | \n",
+ " INLAND | \n",
+ "
\n",
+ " \n",
+ " | 20636 | \n",
+ " -121.21 | \n",
+ " 39.49 | \n",
+ " 18.0 | \n",
+ " 697.0 | \n",
+ " 150.0 | \n",
+ " 356.0 | \n",
+ " 114.0 | \n",
+ " 2.5568 | \n",
+ " 77100.0 | \n",
+ " INLAND | \n",
+ "
\n",
+ " \n",
+ " | 20637 | \n",
+ " -121.22 | \n",
+ " 39.43 | \n",
+ " 17.0 | \n",
+ " 2254.0 | \n",
+ " 485.0 | \n",
+ " 1007.0 | \n",
+ " 433.0 | \n",
+ " 1.7000 | \n",
+ " 92300.0 | \n",
+ " INLAND | \n",
+ "
\n",
+ " \n",
+ " | 20638 | \n",
+ " -121.32 | \n",
+ " 39.43 | \n",
+ " 18.0 | \n",
+ " 1860.0 | \n",
+ " 409.0 | \n",
+ " 741.0 | \n",
+ " 349.0 | \n",
+ " 1.8672 | \n",
+ " 84700.0 | \n",
+ " INLAND | \n",
+ "
\n",
+ " \n",
+ " | 20639 | \n",
+ " -121.24 | \n",
+ " 39.37 | \n",
+ " 16.0 | \n",
+ " 2785.0 | \n",
+ " 616.0 | \n",
+ " 1387.0 | \n",
+ " 530.0 | \n",
+ " 2.3886 | \n",
+ " 89400.0 | \n",
+ " INLAND | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " longitude latitude housing_median_age total_rooms total_bedrooms \\\n",
+ "20635 -121.09 39.48 25.0 1665.0 374.0 \n",
+ "20636 -121.21 39.49 18.0 697.0 150.0 \n",
+ "20637 -121.22 39.43 17.0 2254.0 485.0 \n",
+ "20638 -121.32 39.43 18.0 1860.0 409.0 \n",
+ "20639 -121.24 39.37 16.0 2785.0 616.0 \n",
+ "\n",
+ " population households median_income median_house_value \\\n",
+ "20635 845.0 330.0 1.5603 78100.0 \n",
+ "20636 356.0 114.0 2.5568 77100.0 \n",
+ "20637 1007.0 433.0 1.7000 92300.0 \n",
+ "20638 741.0 349.0 1.8672 84700.0 \n",
+ "20639 1387.0 530.0 2.3886 89400.0 \n",
+ "\n",
+ " ocean_proximity \n",
+ "20635 INLAND \n",
+ "20636 INLAND \n",
+ "20637 INLAND \n",
+ "20638 INLAND \n",
+ "20639 INLAND "
+ ]
+ },
+ "execution_count": 679,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "housing = pd.read_csv('C:/Users/DELL/Documents/GitHub/Data-Visualization/housing.csv')\n",
+ "housing.tail()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 680,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " sex | \n",
+ " bmi | \n",
+ " children | \n",
+ " smoker | \n",
+ " region | \n",
+ " charges | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 19 | \n",
+ " female | \n",
+ " 27.900 | \n",
+ " 0 | \n",
+ " yes | \n",
+ " southwest | \n",
+ " 16884.92400 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 18 | \n",
+ " male | \n",
+ " 33.770 | \n",
+ " 1 | \n",
+ " no | \n",
+ " southeast | \n",
+ " 1725.55230 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 28 | \n",
+ " male | \n",
+ " 33.000 | \n",
+ " 3 | \n",
+ " no | \n",
+ " southeast | \n",
+ " 4449.46200 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 33 | \n",
+ " male | \n",
+ " 22.705 | \n",
+ " 0 | \n",
+ " no | \n",
+ " northwest | \n",
+ " 21984.47061 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 32 | \n",
+ " male | \n",
+ " 28.880 | \n",
+ " 0 | \n",
+ " no | \n",
+ " northwest | \n",
+ " 3866.85520 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 31 | \n",
+ " female | \n",
+ " 25.740 | \n",
+ " 0 | \n",
+ " no | \n",
+ " southeast | \n",
+ " 3756.62160 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 46 | \n",
+ " female | \n",
+ " 33.440 | \n",
+ " 1 | \n",
+ " no | \n",
+ " southeast | \n",
+ " 8240.58960 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 37 | \n",
+ " female | \n",
+ " 27.740 | \n",
+ " 3 | \n",
+ " no | \n",
+ " northwest | \n",
+ " 7281.50560 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 37 | \n",
+ " male | \n",
+ " 29.830 | \n",
+ " 2 | \n",
+ " no | \n",
+ " northeast | \n",
+ " 6406.41070 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 60 | \n",
+ " female | \n",
+ " 25.840 | \n",
+ " 0 | \n",
+ " no | \n",
+ " northwest | \n",
+ " 28923.13692 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age sex bmi children smoker region charges\n",
+ "0 19 female 27.900 0 yes southwest 16884.92400\n",
+ "1 18 male 33.770 1 no southeast 1725.55230\n",
+ "2 28 male 33.000 3 no southeast 4449.46200\n",
+ "3 33 male 22.705 0 no northwest 21984.47061\n",
+ "4 32 male 28.880 0 no northwest 3866.85520\n",
+ "5 31 female 25.740 0 no southeast 3756.62160\n",
+ "6 46 female 33.440 1 no southeast 8240.58960\n",
+ "7 37 female 27.740 3 no northwest 7281.50560\n",
+ "8 37 male 29.830 2 no northeast 6406.41070\n",
+ "9 60 female 25.840 0 no northwest 28923.13692"
+ ]
+ },
+ "execution_count": 680,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "insurance = pd.read_csv('C:/Users/DELL/Documents/GitHub/Data-Visualization/insurance.csv')\n",
+ "insurance.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 681,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Age | \n",
+ " Gender | \n",
+ " Period | \n",
+ " Unemployed | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 16 to 19 years | \n",
+ " Men | \n",
+ " 2005-01-01 | \n",
+ " 91000 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 20 to 24 years | \n",
+ " Men | \n",
+ " 2005-01-01 | \n",
+ " 175000 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 25 to 34 years | \n",
+ " Men | \n",
+ " 2005-01-01 | \n",
+ " 194000 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 35 to 44 years | \n",
+ " Men | \n",
+ " 2005-01-01 | \n",
+ " 201000 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 45 to 54 years | \n",
+ " Men | \n",
+ " 2005-01-01 | \n",
+ " 207000 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 55 to 64 years | \n",
+ " Men | \n",
+ " 2005-01-01 | \n",
+ " 101000 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 65 years and over | \n",
+ " Men | \n",
+ " 2005-01-01 | \n",
+ " 33000 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 16 to 19 years | \n",
+ " Women | \n",
+ " 2005-01-01 | \n",
+ " 38000 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 20 to 24 years | \n",
+ " Women | \n",
+ " 2005-01-01 | \n",
+ " 90000 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 25 to 34 years | \n",
+ " Women | \n",
+ " 2005-01-01 | \n",
+ " 142000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Age Gender Period Unemployed\n",
+ "0 16 to 19 years Men 2005-01-01 91000\n",
+ "1 20 to 24 years Men 2005-01-01 175000\n",
+ "2 25 to 34 years Men 2005-01-01 194000\n",
+ "3 35 to 44 years Men 2005-01-01 201000\n",
+ "4 45 to 54 years Men 2005-01-01 207000\n",
+ "5 55 to 64 years Men 2005-01-01 101000\n",
+ "6 65 years and over Men 2005-01-01 33000\n",
+ "7 16 to 19 years Women 2005-01-01 38000\n",
+ "8 20 to 24 years Women 2005-01-01 90000\n",
+ "9 25 to 34 years Women 2005-01-01 142000"
+ ]
+ },
+ "execution_count": 681,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "employment = pd.read_excel(\"unemployment.xlsx\")\n",
+ "employment.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 683,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " ticket | \n",
+ " requestor | \n",
+ " RequestorSeniority | \n",
+ " ITOwner | \n",
+ " FiledAgainst | \n",
+ " TicketType | \n",
+ " Severity | \n",
+ " Priority | \n",
+ " daysOpen | \n",
+ " Satisfaction | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 1929 | \n",
+ " 1 - Junior | \n",
+ " 50 | \n",
+ " Systems | \n",
+ " Issue | \n",
+ " 2 - Normal | \n",
+ " 0 - Unassigned | \n",
+ " 3 | \n",
+ " 1 - Unsatisfied | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 1587 | \n",
+ " 2 - Regular | \n",
+ " 15 | \n",
+ " Software | \n",
+ " Request | \n",
+ " 1 - Minor | \n",
+ " 1 - Low | \n",
+ " 5 | \n",
+ " 1 - Unsatisfied | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 925 | \n",
+ " 2 - Regular | \n",
+ " 15 | \n",
+ " Access/Login | \n",
+ " Request | \n",
+ " 2 - Normal | \n",
+ " 0 - Unassigned | \n",
+ " 0 | \n",
+ " 0 - Unknown | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 413 | \n",
+ " 4 - Management | \n",
+ " 22 | \n",
+ " Systems | \n",
+ " Request | \n",
+ " 2 - Normal | \n",
+ " 0 - Unassigned | \n",
+ " 20 | \n",
+ " 0 - Unknown | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 318 | \n",
+ " 1 - Junior | \n",
+ " 22 | \n",
+ " Access/Login | \n",
+ " Request | \n",
+ " 2 - Normal | \n",
+ " 1 - Low | \n",
+ " 1 | \n",
+ " 1 - Unsatisfied | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 6 | \n",
+ " 858 | \n",
+ " 4 - Management | \n",
+ " 38 | \n",
+ " Access/Login | \n",
+ " Request | \n",
+ " 2 - Normal | \n",
+ " 3 - High | \n",
+ " 0 | \n",
+ " 0 - Unknown | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 7 | \n",
+ " 1978 | \n",
+ " 3 - Senior | \n",
+ " 10 | \n",
+ " Systems | \n",
+ " Request | \n",
+ " 2 - Normal | \n",
+ " 3 - High | \n",
+ " 9 | \n",
+ " 0 - Unknown | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 8 | \n",
+ " 1209 | \n",
+ " 4 - Management | \n",
+ " 1 | \n",
+ " Software | \n",
+ " Request | \n",
+ " 2 - Normal | \n",
+ " 0 - Unassigned | \n",
+ " 15 | \n",
+ " 0 - Unknown | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 9 | \n",
+ " 887 | \n",
+ " 2 - Regular | \n",
+ " 14 | \n",
+ " Software | \n",
+ " Request | \n",
+ " 2 - Normal | \n",
+ " 2 - Medium | \n",
+ " 6 | \n",
+ " 1 - Unsatisfied | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 10 | \n",
+ " 1780 | \n",
+ " 3 - Senior | \n",
+ " 46 | \n",
+ " Access/Login | \n",
+ " Request | \n",
+ " 2 - Normal | \n",
+ " 1 - Low | \n",
+ " 1 | \n",
+ " 1 - Unsatisfied | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ticket requestor RequestorSeniority ITOwner FiledAgainst TicketType \\\n",
+ "0 1 1929 1 - Junior 50 Systems Issue \n",
+ "1 2 1587 2 - Regular 15 Software Request \n",
+ "2 3 925 2 - Regular 15 Access/Login Request \n",
+ "3 4 413 4 - Management 22 Systems Request \n",
+ "4 5 318 1 - Junior 22 Access/Login Request \n",
+ "5 6 858 4 - Management 38 Access/Login Request \n",
+ "6 7 1978 3 - Senior 10 Systems Request \n",
+ "7 8 1209 4 - Management 1 Software Request \n",
+ "8 9 887 2 - Regular 14 Software Request \n",
+ "9 10 1780 3 - Senior 46 Access/Login Request \n",
+ "\n",
+ " Severity Priority daysOpen Satisfaction \n",
+ "0 2 - Normal 0 - Unassigned 3 1 - Unsatisfied \n",
+ "1 1 - Minor 1 - Low 5 1 - Unsatisfied \n",
+ "2 2 - Normal 0 - Unassigned 0 0 - Unknown \n",
+ "3 2 - Normal 0 - Unassigned 20 0 - Unknown \n",
+ "4 2 - Normal 1 - Low 1 1 - Unsatisfied \n",
+ "5 2 - Normal 3 - High 0 0 - Unknown \n",
+ "6 2 - Normal 3 - High 9 0 - Unknown \n",
+ "7 2 - Normal 0 - Unassigned 15 0 - Unknown \n",
+ "8 2 - Normal 2 - Medium 6 1 - Unsatisfied \n",
+ "9 2 - Normal 1 - Low 1 1 - Unsatisfied "
+ ]
+ },
+ "execution_count": 683,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "helpdesk = pd.read_csv(\"helpdesk.csv\")\n",
+ "helpdesk.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 684,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Species | \n",
+ " Weight | \n",
+ " Length1 | \n",
+ " Length2 | \n",
+ " Length3 | \n",
+ " Height | \n",
+ " Width | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " Bream | \n",
+ " 242.0 | \n",
+ " 23.2 | \n",
+ " 25.4 | \n",
+ " 30.0 | \n",
+ " 11.5200 | \n",
+ " 4.0200 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " Bream | \n",
+ " 290.0 | \n",
+ " 24.0 | \n",
+ " 26.3 | \n",
+ " 31.2 | \n",
+ " 12.4800 | \n",
+ " 4.3056 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " Bream | \n",
+ " 340.0 | \n",
+ " 23.9 | \n",
+ " 26.5 | \n",
+ " 31.1 | \n",
+ " 12.3778 | \n",
+ " 4.6961 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " Bream | \n",
+ " 363.0 | \n",
+ " 26.3 | \n",
+ " 29.0 | \n",
+ " 33.5 | \n",
+ " 12.7300 | \n",
+ " 4.4555 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " Bream | \n",
+ " 430.0 | \n",
+ " 26.5 | \n",
+ " 29.0 | \n",
+ " 34.0 | \n",
+ " 12.4440 | \n",
+ " 5.1340 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " Bream | \n",
+ " 450.0 | \n",
+ " 26.8 | \n",
+ " 29.7 | \n",
+ " 34.7 | \n",
+ " 13.6024 | \n",
+ " 4.9274 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " Bream | \n",
+ " 500.0 | \n",
+ " 26.8 | \n",
+ " 29.7 | \n",
+ " 34.5 | \n",
+ " 14.1795 | \n",
+ " 5.2785 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " Bream | \n",
+ " 390.0 | \n",
+ " 27.6 | \n",
+ " 30.0 | \n",
+ " 35.0 | \n",
+ " 12.6700 | \n",
+ " 4.6900 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " Bream | \n",
+ " 450.0 | \n",
+ " 27.6 | \n",
+ " 30.0 | \n",
+ " 35.1 | \n",
+ " 14.0049 | \n",
+ " 4.8438 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " Bream | \n",
+ " 500.0 | \n",
+ " 28.5 | \n",
+ " 30.7 | \n",
+ " 36.2 | \n",
+ " 14.2266 | \n",
+ " 4.9594 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Species Weight Length1 Length2 Length3 Height Width\n",
+ "0 Bream 242.0 23.2 25.4 30.0 11.5200 4.0200\n",
+ "1 Bream 290.0 24.0 26.3 31.2 12.4800 4.3056\n",
+ "2 Bream 340.0 23.9 26.5 31.1 12.3778 4.6961\n",
+ "3 Bream 363.0 26.3 29.0 33.5 12.7300 4.4555\n",
+ "4 Bream 430.0 26.5 29.0 34.0 12.4440 5.1340\n",
+ "5 Bream 450.0 26.8 29.7 34.7 13.6024 4.9274\n",
+ "6 Bream 500.0 26.8 29.7 34.5 14.1795 5.2785\n",
+ "7 Bream 390.0 27.6 30.0 35.0 12.6700 4.6900\n",
+ "8 Bream 450.0 27.6 30.0 35.1 14.0049 4.8438\n",
+ "9 Bream 500.0 28.5 30.7 36.2 14.2266 4.9594"
+ ]
+ },
+ "execution_count": 684,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "fish= pd.read_csv(\"Fish.csv\")\n",
+ "fish.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 685,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " diet | \n",
+ " pulse | \n",
+ " time | \n",
+ " kind | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " low fat | \n",
+ " 85 | \n",
+ " 1 min | \n",
+ " rest | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 1 | \n",
+ " low fat | \n",
+ " 85 | \n",
+ " 15 min | \n",
+ " rest | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 1 | \n",
+ " low fat | \n",
+ " 88 | \n",
+ " 30 min | \n",
+ " rest | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 2 | \n",
+ " low fat | \n",
+ " 90 | \n",
+ " 1 min | \n",
+ " rest | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2 | \n",
+ " low fat | \n",
+ " 92 | \n",
+ " 15 min | \n",
+ " rest | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 2 | \n",
+ " low fat | \n",
+ " 93 | \n",
+ " 30 min | \n",
+ " rest | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 3 | \n",
+ " low fat | \n",
+ " 97 | \n",
+ " 1 min | \n",
+ " rest | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 3 | \n",
+ " low fat | \n",
+ " 97 | \n",
+ " 15 min | \n",
+ " rest | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 3 | \n",
+ " low fat | \n",
+ " 94 | \n",
+ " 30 min | \n",
+ " rest | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 4 | \n",
+ " low fat | \n",
+ " 80 | \n",
+ " 1 min | \n",
+ " rest | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id diet pulse time kind\n",
+ "0 1 low fat 85 1 min rest\n",
+ "1 1 low fat 85 15 min rest\n",
+ "2 1 low fat 88 30 min rest\n",
+ "3 2 low fat 90 1 min rest\n",
+ "4 2 low fat 92 15 min rest\n",
+ "5 2 low fat 93 30 min rest\n",
+ "6 3 low fat 97 1 min rest\n",
+ "7 3 low fat 97 15 min rest\n",
+ "8 3 low fat 94 30 min rest\n",
+ "9 4 low fat 80 1 min rest"
+ ]
+ },
+ "execution_count": 685,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "exercise = pd.read_csv(\"exercise.csv\")\n",
+ "exercise.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 686,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " country | \n",
+ " year | \n",
+ " sex | \n",
+ " age | \n",
+ " suicides_no | \n",
+ " population | \n",
+ " suicides/100k pop | \n",
+ " country-year | \n",
+ " HDI for year | \n",
+ " gdp_for_year ($) | \n",
+ " gdp_per_capita ($) | \n",
+ " generation | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " Albania | \n",
+ " 1987 | \n",
+ " male | \n",
+ " 15-24 years | \n",
+ " 21 | \n",
+ " 312900 | \n",
+ " 6.71 | \n",
+ " Albania1987 | \n",
+ " NaN | \n",
+ " 2,156,624,900 | \n",
+ " 796 | \n",
+ " Generation X | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " Albania | \n",
+ " 1987 | \n",
+ " male | \n",
+ " 35-54 years | \n",
+ " 16 | \n",
+ " 308000 | \n",
+ " 5.19 | \n",
+ " Albania1987 | \n",
+ " NaN | \n",
+ " 2,156,624,900 | \n",
+ " 796 | \n",
+ " Silent | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " Albania | \n",
+ " 1987 | \n",
+ " female | \n",
+ " 15-24 years | \n",
+ " 14 | \n",
+ " 289700 | \n",
+ " 4.83 | \n",
+ " Albania1987 | \n",
+ " NaN | \n",
+ " 2,156,624,900 | \n",
+ " 796 | \n",
+ " Generation X | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " Albania | \n",
+ " 1987 | \n",
+ " male | \n",
+ " 75+ years | \n",
+ " 1 | \n",
+ " 21800 | \n",
+ " 4.59 | \n",
+ " Albania1987 | \n",
+ " NaN | \n",
+ " 2,156,624,900 | \n",
+ " 796 | \n",
+ " G.I. Generation | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " Albania | \n",
+ " 1987 | \n",
+ " male | \n",
+ " 25-34 years | \n",
+ " 9 | \n",
+ " 274300 | \n",
+ " 3.28 | \n",
+ " Albania1987 | \n",
+ " NaN | \n",
+ " 2,156,624,900 | \n",
+ " 796 | \n",
+ " Boomers | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " Albania | \n",
+ " 1987 | \n",
+ " female | \n",
+ " 75+ years | \n",
+ " 1 | \n",
+ " 35600 | \n",
+ " 2.81 | \n",
+ " Albania1987 | \n",
+ " NaN | \n",
+ " 2,156,624,900 | \n",
+ " 796 | \n",
+ " G.I. Generation | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " Albania | \n",
+ " 1987 | \n",
+ " female | \n",
+ " 35-54 years | \n",
+ " 6 | \n",
+ " 278800 | \n",
+ " 2.15 | \n",
+ " Albania1987 | \n",
+ " NaN | \n",
+ " 2,156,624,900 | \n",
+ " 796 | \n",
+ " Silent | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " Albania | \n",
+ " 1987 | \n",
+ " female | \n",
+ " 25-34 years | \n",
+ " 4 | \n",
+ " 257200 | \n",
+ " 1.56 | \n",
+ " Albania1987 | \n",
+ " NaN | \n",
+ " 2,156,624,900 | \n",
+ " 796 | \n",
+ " Boomers | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " Albania | \n",
+ " 1987 | \n",
+ " male | \n",
+ " 55-74 years | \n",
+ " 1 | \n",
+ " 137500 | \n",
+ " 0.73 | \n",
+ " Albania1987 | \n",
+ " NaN | \n",
+ " 2,156,624,900 | \n",
+ " 796 | \n",
+ " G.I. Generation | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " Albania | \n",
+ " 1987 | \n",
+ " female | \n",
+ " 5-14 years | \n",
+ " 0 | \n",
+ " 311000 | \n",
+ " 0.00 | \n",
+ " Albania1987 | \n",
+ " NaN | \n",
+ " 2,156,624,900 | \n",
+ " 796 | \n",
+ " Generation X | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " country year sex age suicides_no population \\\n",
+ "0 Albania 1987 male 15-24 years 21 312900 \n",
+ "1 Albania 1987 male 35-54 years 16 308000 \n",
+ "2 Albania 1987 female 15-24 years 14 289700 \n",
+ "3 Albania 1987 male 75+ years 1 21800 \n",
+ "4 Albania 1987 male 25-34 years 9 274300 \n",
+ "5 Albania 1987 female 75+ years 1 35600 \n",
+ "6 Albania 1987 female 35-54 years 6 278800 \n",
+ "7 Albania 1987 female 25-34 years 4 257200 \n",
+ "8 Albania 1987 male 55-74 years 1 137500 \n",
+ "9 Albania 1987 female 5-14 years 0 311000 \n",
+ "\n",
+ " suicides/100k pop country-year HDI for year gdp_for_year ($) \\\n",
+ "0 6.71 Albania1987 NaN 2,156,624,900 \n",
+ "1 5.19 Albania1987 NaN 2,156,624,900 \n",
+ "2 4.83 Albania1987 NaN 2,156,624,900 \n",
+ "3 4.59 Albania1987 NaN 2,156,624,900 \n",
+ "4 3.28 Albania1987 NaN 2,156,624,900 \n",
+ "5 2.81 Albania1987 NaN 2,156,624,900 \n",
+ "6 2.15 Albania1987 NaN 2,156,624,900 \n",
+ "7 1.56 Albania1987 NaN 2,156,624,900 \n",
+ "8 0.73 Albania1987 NaN 2,156,624,900 \n",
+ "9 0.00 Albania1987 NaN 2,156,624,900 \n",
+ "\n",
+ " gdp_per_capita ($) generation \n",
+ "0 796 Generation X \n",
+ "1 796 Silent \n",
+ "2 796 Generation X \n",
+ "3 796 G.I. Generation \n",
+ "4 796 Boomers \n",
+ "5 796 G.I. Generation \n",
+ "6 796 Silent \n",
+ "7 796 Boomers \n",
+ "8 796 G.I. Generation \n",
+ "9 796 Generation X "
+ ]
+ },
+ "execution_count": 686,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "suicide = pd.read_csv(\"suicide.csv\") \n",
+ "suicide.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 687,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Type | \n",
+ " Coverage | \n",
+ " OdName | \n",
+ " AREA | \n",
+ " AreaName | \n",
+ " REG | \n",
+ " RegName | \n",
+ " DEV | \n",
+ " DevName | \n",
+ " 1980 | \n",
+ " ... | \n",
+ " 2004 | \n",
+ " 2005 | \n",
+ " 2006 | \n",
+ " 2007 | \n",
+ " 2008 | \n",
+ " 2009 | \n",
+ " 2010 | \n",
+ " 2011 | \n",
+ " 2012 | \n",
+ " 2013 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " Immigrants | \n",
+ " Foreigners | \n",
+ " Afghanistan | \n",
+ " 935 | \n",
+ " Asia | \n",
+ " 5501 | \n",
+ " Southern Asia | \n",
+ " 902 | \n",
+ " Developing regions | \n",
+ " 16 | \n",
+ " ... | \n",
+ " 2978 | \n",
+ " 3436 | \n",
+ " 3009 | \n",
+ " 2652 | \n",
+ " 2111 | \n",
+ " 1746 | \n",
+ " 1758 | \n",
+ " 2203 | \n",
+ " 2635 | \n",
+ " 2004 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " Immigrants | \n",
+ " Foreigners | \n",
+ " Albania | \n",
+ " 908 | \n",
+ " Europe | \n",
+ " 925 | \n",
+ " Southern Europe | \n",
+ " 901 | \n",
+ " Developed regions | \n",
+ " 1 | \n",
+ " ... | \n",
+ " 1450 | \n",
+ " 1223 | \n",
+ " 856 | \n",
+ " 702 | \n",
+ " 560 | \n",
+ " 716 | \n",
+ " 561 | \n",
+ " 539 | \n",
+ " 620 | \n",
+ " 603 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " Immigrants | \n",
+ " Foreigners | \n",
+ " Algeria | \n",
+ " 903 | \n",
+ " Africa | \n",
+ " 912 | \n",
+ " Northern Africa | \n",
+ " 902 | \n",
+ " Developing regions | \n",
+ " 80 | \n",
+ " ... | \n",
+ " 3616 | \n",
+ " 3626 | \n",
+ " 4807 | \n",
+ " 3623 | \n",
+ " 4005 | \n",
+ " 5393 | \n",
+ " 4752 | \n",
+ " 4325 | \n",
+ " 3774 | \n",
+ " 4331 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " Immigrants | \n",
+ " Foreigners | \n",
+ " American Samoa | \n",
+ " 909 | \n",
+ " Oceania | \n",
+ " 957 | \n",
+ " Polynesia | \n",
+ " 902 | \n",
+ " Developing regions | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " Immigrants | \n",
+ " Foreigners | \n",
+ " Andorra | \n",
+ " 908 | \n",
+ " Europe | \n",
+ " 925 | \n",
+ " Southern Europe | \n",
+ " 901 | \n",
+ " Developed regions | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 43 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Type Coverage OdName AREA AreaName REG \\\n",
+ "0 Immigrants Foreigners Afghanistan 935 Asia 5501 \n",
+ "1 Immigrants Foreigners Albania 908 Europe 925 \n",
+ "2 Immigrants Foreigners Algeria 903 Africa 912 \n",
+ "3 Immigrants Foreigners American Samoa 909 Oceania 957 \n",
+ "4 Immigrants Foreigners Andorra 908 Europe 925 \n",
+ "\n",
+ " RegName DEV DevName 1980 ... 2004 2005 2006 \\\n",
+ "0 Southern Asia 902 Developing regions 16 ... 2978 3436 3009 \n",
+ "1 Southern Europe 901 Developed regions 1 ... 1450 1223 856 \n",
+ "2 Northern Africa 902 Developing regions 80 ... 3616 3626 4807 \n",
+ "3 Polynesia 902 Developing regions 0 ... 0 0 1 \n",
+ "4 Southern Europe 901 Developed regions 0 ... 0 0 1 \n",
+ "\n",
+ " 2007 2008 2009 2010 2011 2012 2013 \n",
+ "0 2652 2111 1746 1758 2203 2635 2004 \n",
+ "1 702 560 716 561 539 620 603 \n",
+ "2 3623 4005 5393 4752 4325 3774 4331 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 1 0 0 0 0 1 1 \n",
+ "\n",
+ "[5 rows x 43 columns]"
+ ]
+ },
+ "execution_count": 687,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "canada = pd.read_csv(\"canada.csv\")\n",
+ "canada.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 688,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['Type', 'Coverage', 'OdName', 'AREA', 'AreaName', 'REG', 'RegName',\n",
+ " 'DEV', 'DevName', '1980', '1981', '1982', '1983', '1984', '1985',\n",
+ " '1986', '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994',\n",
+ " '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003',\n",
+ " '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012',\n",
+ " '2013'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 688,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "canada.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 689,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " OdName | \n",
+ " 1980 | \n",
+ " 1981 | \n",
+ " 1982 | \n",
+ " 1983 | \n",
+ " 1984 | \n",
+ " 1985 | \n",
+ " 1986 | \n",
+ " 1987 | \n",
+ " 1988 | \n",
+ " ... | \n",
+ " 2004 | \n",
+ " 2005 | \n",
+ " 2006 | \n",
+ " 2007 | \n",
+ " 2008 | \n",
+ " 2009 | \n",
+ " 2010 | \n",
+ " 2011 | \n",
+ " 2012 | \n",
+ " 2013 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " Afghanistan | \n",
+ " 16 | \n",
+ " 39 | \n",
+ " 39 | \n",
+ " 47 | \n",
+ " 71 | \n",
+ " 340 | \n",
+ " 496 | \n",
+ " 741 | \n",
+ " 828 | \n",
+ " ... | \n",
+ " 2978 | \n",
+ " 3436 | \n",
+ " 3009 | \n",
+ " 2652 | \n",
+ " 2111 | \n",
+ " 1746 | \n",
+ " 1758 | \n",
+ " 2203 | \n",
+ " 2635 | \n",
+ " 2004 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " Albania | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " ... | \n",
+ " 1450 | \n",
+ " 1223 | \n",
+ " 856 | \n",
+ " 702 | \n",
+ " 560 | \n",
+ " 716 | \n",
+ " 561 | \n",
+ " 539 | \n",
+ " 620 | \n",
+ " 603 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " Algeria | \n",
+ " 80 | \n",
+ " 67 | \n",
+ " 71 | \n",
+ " 69 | \n",
+ " 63 | \n",
+ " 44 | \n",
+ " 69 | \n",
+ " 132 | \n",
+ " 242 | \n",
+ " ... | \n",
+ " 3616 | \n",
+ " 3626 | \n",
+ " 4807 | \n",
+ " 3623 | \n",
+ " 4005 | \n",
+ " 5393 | \n",
+ " 4752 | \n",
+ " 4325 | \n",
+ " 3774 | \n",
+ " 4331 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " American Samoa | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " Andorra | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 35 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " OdName 1980 1981 1982 1983 1984 1985 1986 1987 1988 ... \\\n",
+ "0 Afghanistan 16 39 39 47 71 340 496 741 828 ... \n",
+ "1 Albania 1 0 0 0 0 0 1 2 2 ... \n",
+ "2 Algeria 80 67 71 69 63 44 69 132 242 ... \n",
+ "3 American Samoa 0 1 0 0 0 0 0 1 0 ... \n",
+ "4 Andorra 0 0 0 0 0 0 2 0 0 ... \n",
+ "\n",
+ " 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 \n",
+ "0 2978 3436 3009 2652 2111 1746 1758 2203 2635 2004 \n",
+ "1 1450 1223 856 702 560 716 561 539 620 603 \n",
+ "2 3616 3626 4807 3623 4005 5393 4752 4325 3774 4331 \n",
+ "3 0 0 1 0 0 0 0 0 0 0 \n",
+ "4 0 0 1 1 0 0 0 0 1 1 \n",
+ "\n",
+ "[5 rows x 35 columns]"
+ ]
+ },
+ "execution_count": 689,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "canada.drop(columns=['AREA' , 'DEV', 'DevName' , 'REG', 'Type', 'Coverage' , 'AreaName', 'RegName' ], inplace=True)\n",
+ "canada.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 690,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Country | \n",
+ " 1980 | \n",
+ " 1981 | \n",
+ " 1982 | \n",
+ " 1983 | \n",
+ " 1984 | \n",
+ " 1985 | \n",
+ " 1986 | \n",
+ " 1987 | \n",
+ " 1988 | \n",
+ " ... | \n",
+ " 2004 | \n",
+ " 2005 | \n",
+ " 2006 | \n",
+ " 2007 | \n",
+ " 2008 | \n",
+ " 2009 | \n",
+ " 2010 | \n",
+ " 2011 | \n",
+ " 2012 | \n",
+ " 2013 | \n",
+ "
\n",
+ " \n",
+ " | Country | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | Afghanistan | \n",
+ " Afghanistan | \n",
+ " 16 | \n",
+ " 39 | \n",
+ " 39 | \n",
+ " 47 | \n",
+ " 71 | \n",
+ " 340 | \n",
+ " 496 | \n",
+ " 741 | \n",
+ " 828 | \n",
+ " ... | \n",
+ " 2978 | \n",
+ " 3436 | \n",
+ " 3009 | \n",
+ " 2652 | \n",
+ " 2111 | \n",
+ " 1746 | \n",
+ " 1758 | \n",
+ " 2203 | \n",
+ " 2635 | \n",
+ " 2004 | \n",
+ "
\n",
+ " \n",
+ " | Albania | \n",
+ " Albania | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " ... | \n",
+ " 1450 | \n",
+ " 1223 | \n",
+ " 856 | \n",
+ " 702 | \n",
+ " 560 | \n",
+ " 716 | \n",
+ " 561 | \n",
+ " 539 | \n",
+ " 620 | \n",
+ " 603 | \n",
+ "
\n",
+ " \n",
+ " | Algeria | \n",
+ " Algeria | \n",
+ " 80 | \n",
+ " 67 | \n",
+ " 71 | \n",
+ " 69 | \n",
+ " 63 | \n",
+ " 44 | \n",
+ " 69 | \n",
+ " 132 | \n",
+ " 242 | \n",
+ " ... | \n",
+ " 3616 | \n",
+ " 3626 | \n",
+ " 4807 | \n",
+ " 3623 | \n",
+ " 4005 | \n",
+ " 5393 | \n",
+ " 4752 | \n",
+ " 4325 | \n",
+ " 3774 | \n",
+ " 4331 | \n",
+ "
\n",
+ " \n",
+ " | American Samoa | \n",
+ " American Samoa | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | Andorra | \n",
+ " Andorra | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 35 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Country 1980 1981 1982 1983 1984 1985 1986 \\\n",
+ "Country \n",
+ "Afghanistan Afghanistan 16 39 39 47 71 340 496 \n",
+ "Albania Albania 1 0 0 0 0 0 1 \n",
+ "Algeria Algeria 80 67 71 69 63 44 69 \n",
+ "American Samoa American Samoa 0 1 0 0 0 0 0 \n",
+ "Andorra Andorra 0 0 0 0 0 0 2 \n",
+ "\n",
+ " 1987 1988 ... 2004 2005 2006 2007 2008 2009 2010 \\\n",
+ "Country ... \n",
+ "Afghanistan 741 828 ... 2978 3436 3009 2652 2111 1746 1758 \n",
+ "Albania 2 2 ... 1450 1223 856 702 560 716 561 \n",
+ "Algeria 132 242 ... 3616 3626 4807 3623 4005 5393 4752 \n",
+ "American Samoa 1 0 ... 0 0 1 0 0 0 0 \n",
+ "Andorra 0 0 ... 0 0 1 1 0 0 0 \n",
+ "\n",
+ " 2011 2012 2013 \n",
+ "Country \n",
+ "Afghanistan 2203 2635 2004 \n",
+ "Albania 539 620 603 \n",
+ "Algeria 4325 3774 4331 \n",
+ "American Samoa 0 0 0 \n",
+ "Andorra 0 1 1 \n",
+ "\n",
+ "[5 rows x 35 columns]"
+ ]
+ },
+ "execution_count": 690,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "canada.rename(columns={'OdName':'Country'} , inplace=True)\n",
+ "canada.set_index(canada.Country,inplace=True)\n",
+ "canada.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 691,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Country | \n",
+ " 1980 | \n",
+ " 1981 | \n",
+ " 1982 | \n",
+ " 1983 | \n",
+ " 1984 | \n",
+ " 1985 | \n",
+ " 1986 | \n",
+ " 1987 | \n",
+ " 1988 | \n",
+ " ... | \n",
+ " 2004 | \n",
+ " 2005 | \n",
+ " 2006 | \n",
+ " 2007 | \n",
+ " 2008 | \n",
+ " 2009 | \n",
+ " 2010 | \n",
+ " 2011 | \n",
+ " 2012 | \n",
+ " 2013 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | Afghanistan | \n",
+ " Afghanistan | \n",
+ " 16 | \n",
+ " 39 | \n",
+ " 39 | \n",
+ " 47 | \n",
+ " 71 | \n",
+ " 340 | \n",
+ " 496 | \n",
+ " 741 | \n",
+ " 828 | \n",
+ " ... | \n",
+ " 2978 | \n",
+ " 3436 | \n",
+ " 3009 | \n",
+ " 2652 | \n",
+ " 2111 | \n",
+ " 1746 | \n",
+ " 1758 | \n",
+ " 2203 | \n",
+ " 2635 | \n",
+ " 2004 | \n",
+ "
\n",
+ " \n",
+ " | Albania | \n",
+ " Albania | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " ... | \n",
+ " 1450 | \n",
+ " 1223 | \n",
+ " 856 | \n",
+ " 702 | \n",
+ " 560 | \n",
+ " 716 | \n",
+ " 561 | \n",
+ " 539 | \n",
+ " 620 | \n",
+ " 603 | \n",
+ "
\n",
+ " \n",
+ " | Algeria | \n",
+ " Algeria | \n",
+ " 80 | \n",
+ " 67 | \n",
+ " 71 | \n",
+ " 69 | \n",
+ " 63 | \n",
+ " 44 | \n",
+ " 69 | \n",
+ " 132 | \n",
+ " 242 | \n",
+ " ... | \n",
+ " 3616 | \n",
+ " 3626 | \n",
+ " 4807 | \n",
+ " 3623 | \n",
+ " 4005 | \n",
+ " 5393 | \n",
+ " 4752 | \n",
+ " 4325 | \n",
+ " 3774 | \n",
+ " 4331 | \n",
+ "
\n",
+ " \n",
+ " | American Samoa | \n",
+ " American Samoa | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | Andorra | \n",
+ " Andorra | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 35 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Country 1980 1981 1982 1983 1984 1985 1986 \\\n",
+ "Afghanistan Afghanistan 16 39 39 47 71 340 496 \n",
+ "Albania Albania 1 0 0 0 0 0 1 \n",
+ "Algeria Algeria 80 67 71 69 63 44 69 \n",
+ "American Samoa American Samoa 0 1 0 0 0 0 0 \n",
+ "Andorra Andorra 0 0 0 0 0 0 2 \n",
+ "\n",
+ " 1987 1988 ... 2004 2005 2006 2007 2008 2009 2010 \\\n",
+ "Afghanistan 741 828 ... 2978 3436 3009 2652 2111 1746 1758 \n",
+ "Albania 2 2 ... 1450 1223 856 702 560 716 561 \n",
+ "Algeria 132 242 ... 3616 3626 4807 3623 4005 5393 4752 \n",
+ "American Samoa 1 0 ... 0 0 1 0 0 0 0 \n",
+ "Andorra 0 0 ... 0 0 1 1 0 0 0 \n",
+ "\n",
+ " 2011 2012 2013 \n",
+ "Afghanistan 2203 2635 2004 \n",
+ "Albania 539 620 603 \n",
+ "Algeria 4325 3774 4331 \n",
+ "American Samoa 0 0 0 \n",
+ "Andorra 0 1 1 \n",
+ "\n",
+ "[5 rows x 35 columns]"
+ ]
+ },
+ "execution_count": 691,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "canada.index.name=None\n",
+ "canada.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 692,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 1980 | \n",
+ " 1981 | \n",
+ " 1982 | \n",
+ " 1983 | \n",
+ " 1984 | \n",
+ " 1985 | \n",
+ " 1986 | \n",
+ " 1987 | \n",
+ " 1988 | \n",
+ " 1989 | \n",
+ " ... | \n",
+ " 2004 | \n",
+ " 2005 | \n",
+ " 2006 | \n",
+ " 2007 | \n",
+ " 2008 | \n",
+ " 2009 | \n",
+ " 2010 | \n",
+ " 2011 | \n",
+ " 2012 | \n",
+ " 2013 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | Afghanistan | \n",
+ " 16 | \n",
+ " 39 | \n",
+ " 39 | \n",
+ " 47 | \n",
+ " 71 | \n",
+ " 340 | \n",
+ " 496 | \n",
+ " 741 | \n",
+ " 828 | \n",
+ " 1076 | \n",
+ " ... | \n",
+ " 2978 | \n",
+ " 3436 | \n",
+ " 3009 | \n",
+ " 2652 | \n",
+ " 2111 | \n",
+ " 1746 | \n",
+ " 1758 | \n",
+ " 2203 | \n",
+ " 2635 | \n",
+ " 2004 | \n",
+ "
\n",
+ " \n",
+ " | Albania | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " ... | \n",
+ " 1450 | \n",
+ " 1223 | \n",
+ " 856 | \n",
+ " 702 | \n",
+ " 560 | \n",
+ " 716 | \n",
+ " 561 | \n",
+ " 539 | \n",
+ " 620 | \n",
+ " 603 | \n",
+ "
\n",
+ " \n",
+ " | Algeria | \n",
+ " 80 | \n",
+ " 67 | \n",
+ " 71 | \n",
+ " 69 | \n",
+ " 63 | \n",
+ " 44 | \n",
+ " 69 | \n",
+ " 132 | \n",
+ " 242 | \n",
+ " 434 | \n",
+ " ... | \n",
+ " 3616 | \n",
+ " 3626 | \n",
+ " 4807 | \n",
+ " 3623 | \n",
+ " 4005 | \n",
+ " 5393 | \n",
+ " 4752 | \n",
+ " 4325 | \n",
+ " 3774 | \n",
+ " 4331 | \n",
+ "
\n",
+ " \n",
+ " | American Samoa | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | Andorra | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 34 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 \\\n",
+ "Afghanistan 16 39 39 47 71 340 496 741 828 1076 \n",
+ "Albania 1 0 0 0 0 0 1 2 2 3 \n",
+ "Algeria 80 67 71 69 63 44 69 132 242 434 \n",
+ "American Samoa 0 1 0 0 0 0 0 1 0 1 \n",
+ "Andorra 0 0 0 0 0 0 2 0 0 0 \n",
+ "\n",
+ " ... 2004 2005 2006 2007 2008 2009 2010 2011 2012 \\\n",
+ "Afghanistan ... 2978 3436 3009 2652 2111 1746 1758 2203 2635 \n",
+ "Albania ... 1450 1223 856 702 560 716 561 539 620 \n",
+ "Algeria ... 3616 3626 4807 3623 4005 5393 4752 4325 3774 \n",
+ "American Samoa ... 0 0 1 0 0 0 0 0 0 \n",
+ "Andorra ... 0 0 1 1 0 0 0 0 1 \n",
+ "\n",
+ " 2013 \n",
+ "Afghanistan 2004 \n",
+ "Albania 603 \n",
+ "Algeria 4331 \n",
+ "American Samoa 0 \n",
+ "Andorra 1 \n",
+ "\n",
+ "[5 rows x 34 columns]"
+ ]
+ },
+ "execution_count": 692,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "del canada['Country']\n",
+ "canada.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 693,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "canada = canada.transpose()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 694,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Afghanistan | \n",
+ " Albania | \n",
+ " Algeria | \n",
+ " American Samoa | \n",
+ " Andorra | \n",
+ " Angola | \n",
+ " Antigua and Barbuda | \n",
+ " Argentina | \n",
+ " Armenia | \n",
+ " Australia | \n",
+ " ... | \n",
+ " Uzbekistan | \n",
+ " Vanuatu | \n",
+ " Venezuela (Bolivarian Republic of) | \n",
+ " Viet Nam | \n",
+ " Western Sahara | \n",
+ " Yemen | \n",
+ " Zambia | \n",
+ " Zimbabwe | \n",
+ " Unknown | \n",
+ " Total | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1980 | \n",
+ " 16 | \n",
+ " 1 | \n",
+ " 80 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 368 | \n",
+ " 0 | \n",
+ " 702 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 103 | \n",
+ " 1191 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 11 | \n",
+ " 72 | \n",
+ " 44000 | \n",
+ " 143137 | \n",
+ "
\n",
+ " \n",
+ " | 1981 | \n",
+ " 39 | \n",
+ " 0 | \n",
+ " 67 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 426 | \n",
+ " 0 | \n",
+ " 639 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 117 | \n",
+ " 1829 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 17 | \n",
+ " 114 | \n",
+ " 18078 | \n",
+ " 128641 | \n",
+ "
\n",
+ " \n",
+ " | 1982 | \n",
+ " 39 | \n",
+ " 0 | \n",
+ " 71 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 6 | \n",
+ " 0 | \n",
+ " 626 | \n",
+ " 0 | \n",
+ " 484 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 174 | \n",
+ " 2162 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 11 | \n",
+ " 102 | \n",
+ " 16904 | \n",
+ " 121175 | \n",
+ "
\n",
+ " \n",
+ " | 1983 | \n",
+ " 47 | \n",
+ " 0 | \n",
+ " 69 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 6 | \n",
+ " 0 | \n",
+ " 241 | \n",
+ " 0 | \n",
+ " 317 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 124 | \n",
+ " 3404 | \n",
+ " 0 | \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 44 | \n",
+ " 13635 | \n",
+ " 89185 | \n",
+ "
\n",
+ " \n",
+ " | 1984 | \n",
+ " 71 | \n",
+ " 0 | \n",
+ " 63 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 4 | \n",
+ " 42 | \n",
+ " 237 | \n",
+ " 0 | \n",
+ " 317 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 142 | \n",
+ " 7583 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 16 | \n",
+ " 32 | \n",
+ " 14855 | \n",
+ " 88272 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 197 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Afghanistan Albania Algeria American Samoa Andorra Angola \\\n",
+ "1980 16 1 80 0 0 1 \n",
+ "1981 39 0 67 1 0 3 \n",
+ "1982 39 0 71 0 0 6 \n",
+ "1983 47 0 69 0 0 6 \n",
+ "1984 71 0 63 0 0 4 \n",
+ "\n",
+ " Antigua and Barbuda Argentina Armenia Australia ... Uzbekistan \\\n",
+ "1980 0 368 0 702 ... 0 \n",
+ "1981 0 426 0 639 ... 0 \n",
+ "1982 0 626 0 484 ... 0 \n",
+ "1983 0 241 0 317 ... 0 \n",
+ "1984 42 237 0 317 ... 0 \n",
+ "\n",
+ " Vanuatu Venezuela (Bolivarian Republic of) Viet Nam Western Sahara \\\n",
+ "1980 0 103 1191 0 \n",
+ "1981 0 117 1829 0 \n",
+ "1982 0 174 2162 0 \n",
+ "1983 0 124 3404 0 \n",
+ "1984 0 142 7583 0 \n",
+ "\n",
+ " Yemen Zambia Zimbabwe Unknown Total \n",
+ "1980 1 11 72 44000 143137 \n",
+ "1981 2 17 114 18078 128641 \n",
+ "1982 1 11 102 16904 121175 \n",
+ "1983 6 7 44 13635 89185 \n",
+ "1984 0 16 32 14855 88272 \n",
+ "\n",
+ "[5 rows x 197 columns]"
+ ]
+ },
+ "execution_count": 694,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "canada.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 695,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Country | \n",
+ " Year | \n",
+ " Status | \n",
+ " Life expectancy | \n",
+ " Adult Mortality | \n",
+ " infant deaths | \n",
+ " Alcohol | \n",
+ " percentage expenditure | \n",
+ " Hepatitis B | \n",
+ " Measles | \n",
+ " ... | \n",
+ " Polio | \n",
+ " Total expenditure | \n",
+ " Diphtheria | \n",
+ " HIV/AIDS | \n",
+ " GDP | \n",
+ " Population | \n",
+ " thinness 1-19 years | \n",
+ " thinness 5-9 years | \n",
+ " Income composition of resources | \n",
+ " Schooling | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " Afghanistan | \n",
+ " 2015 | \n",
+ " Developing | \n",
+ " 65.0 | \n",
+ " 263.0 | \n",
+ " 62 | \n",
+ " 0.01 | \n",
+ " 71.279624 | \n",
+ " 65.0 | \n",
+ " 1154 | \n",
+ " ... | \n",
+ " 6.0 | \n",
+ " 8.16 | \n",
+ " 65.0 | \n",
+ " 0.1 | \n",
+ " 584.259210 | \n",
+ " 33736494.0 | \n",
+ " 17.2 | \n",
+ " 17.3 | \n",
+ " 0.479 | \n",
+ " 10.1 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " Afghanistan | \n",
+ " 2014 | \n",
+ " Developing | \n",
+ " 59.9 | \n",
+ " 271.0 | \n",
+ " 64 | \n",
+ " 0.01 | \n",
+ " 73.523582 | \n",
+ " 62.0 | \n",
+ " 492 | \n",
+ " ... | \n",
+ " 58.0 | \n",
+ " 8.18 | \n",
+ " 62.0 | \n",
+ " 0.1 | \n",
+ " 612.696514 | \n",
+ " 327582.0 | \n",
+ " 17.5 | \n",
+ " 17.5 | \n",
+ " 0.476 | \n",
+ " 10.0 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " Afghanistan | \n",
+ " 2013 | \n",
+ " Developing | \n",
+ " 59.9 | \n",
+ " 268.0 | \n",
+ " 66 | \n",
+ " 0.01 | \n",
+ " 73.219243 | \n",
+ " 64.0 | \n",
+ " 430 | \n",
+ " ... | \n",
+ " 62.0 | \n",
+ " 8.13 | \n",
+ " 64.0 | \n",
+ " 0.1 | \n",
+ " 631.744976 | \n",
+ " 31731688.0 | \n",
+ " 17.7 | \n",
+ " 17.7 | \n",
+ " 0.470 | \n",
+ " 9.9 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " Afghanistan | \n",
+ " 2012 | \n",
+ " Developing | \n",
+ " 59.5 | \n",
+ " 272.0 | \n",
+ " 69 | \n",
+ " 0.01 | \n",
+ " 78.184215 | \n",
+ " 67.0 | \n",
+ " 2787 | \n",
+ " ... | \n",
+ " 67.0 | \n",
+ " 8.52 | \n",
+ " 67.0 | \n",
+ " 0.1 | \n",
+ " 669.959000 | \n",
+ " 3696958.0 | \n",
+ " 17.9 | \n",
+ " 18.0 | \n",
+ " 0.463 | \n",
+ " 9.8 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " Afghanistan | \n",
+ " 2011 | \n",
+ " Developing | \n",
+ " 59.2 | \n",
+ " 275.0 | \n",
+ " 71 | \n",
+ " 0.01 | \n",
+ " 7.097109 | \n",
+ " 68.0 | \n",
+ " 3013 | \n",
+ " ... | \n",
+ " 68.0 | \n",
+ " 7.87 | \n",
+ " 68.0 | \n",
+ " 0.1 | \n",
+ " 63.537231 | \n",
+ " 2978599.0 | \n",
+ " 18.2 | \n",
+ " 18.2 | \n",
+ " 0.454 | \n",
+ " 9.5 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 22 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Country Year Status Life expectancy Adult Mortality \\\n",
+ "0 Afghanistan 2015 Developing 65.0 263.0 \n",
+ "1 Afghanistan 2014 Developing 59.9 271.0 \n",
+ "2 Afghanistan 2013 Developing 59.9 268.0 \n",
+ "3 Afghanistan 2012 Developing 59.5 272.0 \n",
+ "4 Afghanistan 2011 Developing 59.2 275.0 \n",
+ "\n",
+ " infant deaths Alcohol percentage expenditure Hepatitis B Measles \\\n",
+ "0 62 0.01 71.279624 65.0 1154 \n",
+ "1 64 0.01 73.523582 62.0 492 \n",
+ "2 66 0.01 73.219243 64.0 430 \n",
+ "3 69 0.01 78.184215 67.0 2787 \n",
+ "4 71 0.01 7.097109 68.0 3013 \n",
+ "\n",
+ " ... Polio Total expenditure Diphtheria HIV/AIDS GDP \\\n",
+ "0 ... 6.0 8.16 65.0 0.1 584.259210 \n",
+ "1 ... 58.0 8.18 62.0 0.1 612.696514 \n",
+ "2 ... 62.0 8.13 64.0 0.1 631.744976 \n",
+ "3 ... 67.0 8.52 67.0 0.1 669.959000 \n",
+ "4 ... 68.0 7.87 68.0 0.1 63.537231 \n",
+ "\n",
+ " Population thinness 1-19 years thinness 5-9 years \\\n",
+ "0 33736494.0 17.2 17.3 \n",
+ "1 327582.0 17.5 17.5 \n",
+ "2 31731688.0 17.7 17.7 \n",
+ "3 3696958.0 17.9 18.0 \n",
+ "4 2978599.0 18.2 18.2 \n",
+ "\n",
+ " Income composition of resources Schooling \n",
+ "0 0.479 10.1 \n",
+ "1 0.476 10.0 \n",
+ "2 0.470 9.9 \n",
+ "3 0.463 9.8 \n",
+ "4 0.454 9.5 \n",
+ "\n",
+ "[5 rows x 22 columns]"
+ ]
+ },
+ "execution_count": 695,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "led = pd.read_csv(\"Life Expectancy Data.csv\")\n",
+ "led.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 696,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " workclass | \n",
+ " fnlwgt | \n",
+ " education | \n",
+ " education.num | \n",
+ " marital.status | \n",
+ " occupation | \n",
+ " relationship | \n",
+ " race | \n",
+ " sex | \n",
+ " capital.gain | \n",
+ " capital.loss | \n",
+ " hours.per.week | \n",
+ " native.country | \n",
+ " income | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 90 | \n",
+ " ? | \n",
+ " 77053 | \n",
+ " HS-grad | \n",
+ " 9 | \n",
+ " Widowed | \n",
+ " ? | \n",
+ " Not-in-family | \n",
+ " White | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 4356 | \n",
+ " 40 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 82 | \n",
+ " Private | \n",
+ " 132870 | \n",
+ " HS-grad | \n",
+ " 9 | \n",
+ " Widowed | \n",
+ " Exec-managerial | \n",
+ " Not-in-family | \n",
+ " White | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 4356 | \n",
+ " 18 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 66 | \n",
+ " ? | \n",
+ " 186061 | \n",
+ " Some-college | \n",
+ " 10 | \n",
+ " Widowed | \n",
+ " ? | \n",
+ " Unmarried | \n",
+ " Black | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 4356 | \n",
+ " 40 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 54 | \n",
+ " Private | \n",
+ " 140359 | \n",
+ " 7th-8th | \n",
+ " 4 | \n",
+ " Divorced | \n",
+ " Machine-op-inspct | \n",
+ " Unmarried | \n",
+ " White | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 3900 | \n",
+ " 40 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 41 | \n",
+ " Private | \n",
+ " 264663 | \n",
+ " Some-college | \n",
+ " 10 | \n",
+ " Separated | \n",
+ " Prof-specialty | \n",
+ " Own-child | \n",
+ " White | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 3900 | \n",
+ " 40 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 34 | \n",
+ " Private | \n",
+ " 216864 | \n",
+ " HS-grad | \n",
+ " 9 | \n",
+ " Divorced | \n",
+ " Other-service | \n",
+ " Unmarried | \n",
+ " White | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 3770 | \n",
+ " 45 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 38 | \n",
+ " Private | \n",
+ " 150601 | \n",
+ " 10th | \n",
+ " 6 | \n",
+ " Separated | \n",
+ " Adm-clerical | \n",
+ " Unmarried | \n",
+ " White | \n",
+ " Male | \n",
+ " 0 | \n",
+ " 3770 | \n",
+ " 40 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 74 | \n",
+ " State-gov | \n",
+ " 88638 | \n",
+ " Doctorate | \n",
+ " 16 | \n",
+ " Never-married | \n",
+ " Prof-specialty | \n",
+ " Other-relative | \n",
+ " White | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 3683 | \n",
+ " 20 | \n",
+ " United-States | \n",
+ " >50K | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 68 | \n",
+ " Federal-gov | \n",
+ " 422013 | \n",
+ " HS-grad | \n",
+ " 9 | \n",
+ " Divorced | \n",
+ " Prof-specialty | \n",
+ " Not-in-family | \n",
+ " White | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 3683 | \n",
+ " 40 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 41 | \n",
+ " Private | \n",
+ " 70037 | \n",
+ " Some-college | \n",
+ " 10 | \n",
+ " Never-married | \n",
+ " Craft-repair | \n",
+ " Unmarried | \n",
+ " White | \n",
+ " Male | \n",
+ " 0 | \n",
+ " 3004 | \n",
+ " 60 | \n",
+ " ? | \n",
+ " >50K | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age workclass fnlwgt education education.num marital.status \\\n",
+ "0 90 ? 77053 HS-grad 9 Widowed \n",
+ "1 82 Private 132870 HS-grad 9 Widowed \n",
+ "2 66 ? 186061 Some-college 10 Widowed \n",
+ "3 54 Private 140359 7th-8th 4 Divorced \n",
+ "4 41 Private 264663 Some-college 10 Separated \n",
+ "5 34 Private 216864 HS-grad 9 Divorced \n",
+ "6 38 Private 150601 10th 6 Separated \n",
+ "7 74 State-gov 88638 Doctorate 16 Never-married \n",
+ "8 68 Federal-gov 422013 HS-grad 9 Divorced \n",
+ "9 41 Private 70037 Some-college 10 Never-married \n",
+ "\n",
+ " occupation relationship race sex capital.gain \\\n",
+ "0 ? Not-in-family White Female 0 \n",
+ "1 Exec-managerial Not-in-family White Female 0 \n",
+ "2 ? Unmarried Black Female 0 \n",
+ "3 Machine-op-inspct Unmarried White Female 0 \n",
+ "4 Prof-specialty Own-child White Female 0 \n",
+ "5 Other-service Unmarried White Female 0 \n",
+ "6 Adm-clerical Unmarried White Male 0 \n",
+ "7 Prof-specialty Other-relative White Female 0 \n",
+ "8 Prof-specialty Not-in-family White Female 0 \n",
+ "9 Craft-repair Unmarried White Male 0 \n",
+ "\n",
+ " capital.loss hours.per.week native.country income \n",
+ "0 4356 40 United-States <=50K \n",
+ "1 4356 18 United-States <=50K \n",
+ "2 4356 40 United-States <=50K \n",
+ "3 3900 40 United-States <=50K \n",
+ "4 3900 40 United-States <=50K \n",
+ "5 3770 45 United-States <=50K \n",
+ "6 3770 40 United-States <=50K \n",
+ "7 3683 20 United-States >50K \n",
+ "8 3683 40 United-States <=50K \n",
+ "9 3004 60 ? >50K "
+ ]
+ },
+ "execution_count": 696,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "adult = pd.read_csv(\"adult.csv\")\n",
+ "adult.head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 697,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " workclass | \n",
+ " fnlwgt | \n",
+ " education | \n",
+ " education.num | \n",
+ " marital.status | \n",
+ " occupation | \n",
+ " relationship | \n",
+ " race | \n",
+ " sex | \n",
+ " capital.gain | \n",
+ " capital.loss | \n",
+ " hours.per.week | \n",
+ " native.country | \n",
+ " income | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " 82 | \n",
+ " Private | \n",
+ " 132870 | \n",
+ " HS-grad | \n",
+ " 9 | \n",
+ " Widowed | \n",
+ " Exec-managerial | \n",
+ " Not-in-family | \n",
+ " White | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 4356 | \n",
+ " 18 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 54 | \n",
+ " Private | \n",
+ " 140359 | \n",
+ " 7th-8th | \n",
+ " 4 | \n",
+ " Divorced | \n",
+ " Machine-op-inspct | \n",
+ " Unmarried | \n",
+ " White | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 3900 | \n",
+ " 40 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 41 | \n",
+ " Private | \n",
+ " 264663 | \n",
+ " Some-college | \n",
+ " 10 | \n",
+ " Separated | \n",
+ " Prof-specialty | \n",
+ " Own-child | \n",
+ " White | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 3900 | \n",
+ " 40 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 34 | \n",
+ " Private | \n",
+ " 216864 | \n",
+ " HS-grad | \n",
+ " 9 | \n",
+ " Divorced | \n",
+ " Other-service | \n",
+ " Unmarried | \n",
+ " White | \n",
+ " Female | \n",
+ " 0 | \n",
+ " 3770 | \n",
+ " 45 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 38 | \n",
+ " Private | \n",
+ " 150601 | \n",
+ " 10th | \n",
+ " 6 | \n",
+ " Separated | \n",
+ " Adm-clerical | \n",
+ " Unmarried | \n",
+ " White | \n",
+ " Male | \n",
+ " 0 | \n",
+ " 3770 | \n",
+ " 40 | \n",
+ " United-States | \n",
+ " <=50K | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age workclass fnlwgt education education.num marital.status \\\n",
+ "1 82 Private 132870 HS-grad 9 Widowed \n",
+ "3 54 Private 140359 7th-8th 4 Divorced \n",
+ "4 41 Private 264663 Some-college 10 Separated \n",
+ "5 34 Private 216864 HS-grad 9 Divorced \n",
+ "6 38 Private 150601 10th 6 Separated \n",
+ "\n",
+ " occupation relationship race sex capital.gain \\\n",
+ "1 Exec-managerial Not-in-family White Female 0 \n",
+ "3 Machine-op-inspct Unmarried White Female 0 \n",
+ "4 Prof-specialty Own-child White Female 0 \n",
+ "5 Other-service Unmarried White Female 0 \n",
+ "6 Adm-clerical Unmarried White Male 0 \n",
+ "\n",
+ " capital.loss hours.per.week native.country income \n",
+ "1 4356 18 United-States <=50K \n",
+ "3 3900 40 United-States <=50K \n",
+ "4 3900 40 United-States <=50K \n",
+ "5 3770 45 United-States <=50K \n",
+ "6 3770 40 United-States <=50K "
+ ]
+ },
+ "execution_count": 697,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "adult = adult[adult[\"workclass\"].isin (['Private', 'State-gov', 'Federal-gov'])]\n",
+ "adult.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 698,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " sepal_length | \n",
+ " sepal_width | \n",
+ " petal_length | \n",
+ " petal_width | \n",
+ " species | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 4.9 | \n",
+ " 3.0 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 4.7 | \n",
+ " 3.2 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4.6 | \n",
+ " 3.1 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " setosa | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " sepal_length sepal_width petal_length petal_width species\n",
+ "0 5.1 3.5 1.4 0.2 setosa\n",
+ "1 4.9 3.0 1.4 0.2 setosa\n",
+ "2 4.7 3.2 1.3 0.2 setosa\n",
+ "3 4.6 3.1 1.5 0.2 setosa\n",
+ "4 5.0 3.6 1.4 0.2 setosa"
+ ]
+ },
+ "execution_count": 698,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "iris = sns.load_dataset(\"iris\")\n",
+ "iris.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 700,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " mpg | \n",
+ " cylinders | \n",
+ " cubicinches | \n",
+ " hp | \n",
+ " weightlbs | \n",
+ " time-to-60 | \n",
+ " year | \n",
+ " brand | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 14.0 | \n",
+ " 8 | \n",
+ " 350 | \n",
+ " 165 | \n",
+ " 4209 | \n",
+ " 12 | \n",
+ " 1972 | \n",
+ " US. | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 31.9 | \n",
+ " 4 | \n",
+ " 89 | \n",
+ " 71 | \n",
+ " 1925 | \n",
+ " 14 | \n",
+ " 1980 | \n",
+ " Europe. | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 17.0 | \n",
+ " 8 | \n",
+ " 302 | \n",
+ " 140 | \n",
+ " 3449 | \n",
+ " 11 | \n",
+ " 1971 | \n",
+ " US. | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 15.0 | \n",
+ " 8 | \n",
+ " 400 | \n",
+ " 150 | \n",
+ " 3761 | \n",
+ " 10 | \n",
+ " 1971 | \n",
+ " US. | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 30.5 | \n",
+ " 4 | \n",
+ " 98 | \n",
+ " 63 | \n",
+ " 2051 | \n",
+ " 17 | \n",
+ " 1978 | \n",
+ " US. | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 23.0 | \n",
+ " 8 | \n",
+ " 350 | \n",
+ " 125 | \n",
+ " 3900 | \n",
+ " 17 | \n",
+ " 1980 | \n",
+ " US. | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 13.0 | \n",
+ " 8 | \n",
+ " 351 | \n",
+ " 158 | \n",
+ " 4363 | \n",
+ " 13 | \n",
+ " 1974 | \n",
+ " US. | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 14.0 | \n",
+ " 8 | \n",
+ " 440 | \n",
+ " 215 | \n",
+ " 4312 | \n",
+ " 9 | \n",
+ " 1971 | \n",
+ " US. | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 25.4 | \n",
+ " 5 | \n",
+ " 183 | \n",
+ " 77 | \n",
+ " 3530 | \n",
+ " 20 | \n",
+ " 1980 | \n",
+ " Europe. | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 37.7 | \n",
+ " 4 | \n",
+ " 89 | \n",
+ " 62 | \n",
+ " 2050 | \n",
+ " 17 | \n",
+ " 1982 | \n",
+ " Japan. | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " mpg cylinders cubicinches hp weightlbs time-to-60 year brand\n",
+ "0 14.0 8 350 165 4209 12 1972 US.\n",
+ "1 31.9 4 89 71 1925 14 1980 Europe.\n",
+ "2 17.0 8 302 140 3449 11 1971 US.\n",
+ "3 15.0 8 400 150 3761 10 1971 US.\n",
+ "4 30.5 4 98 63 2051 17 1978 US.\n",
+ "5 23.0 8 350 125 3900 17 1980 US.\n",
+ "6 13.0 8 351 158 4363 13 1974 US.\n",
+ "7 14.0 8 440 215 4312 9 1971 US.\n",
+ "8 25.4 5 183 77 3530 20 1980 Europe.\n",
+ "9 37.7 4 89 62 2050 17 1982 Japan."
+ ]
+ },
+ "execution_count": 700,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cars = pd.read_csv(\"cars.csv\")\n",
+ "cars.head(10)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.0"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}