mirror of
https://github.com/Tencent/DepthCrafter.git
synced 2024-09-25 23:28:07 +03:00
143 lines
5.4 KiB
Python
143 lines
5.4 KiB
Python
from typing import Union, Tuple
|
|
|
|
import torch
|
|
from diffusers import UNetSpatioTemporalConditionModel
|
|
from diffusers.models.unets.unet_spatio_temporal_condition import UNetSpatioTemporalConditionOutput
|
|
|
|
|
|
class DiffusersUNetSpatioTemporalConditionModelDepthCrafter(
|
|
UNetSpatioTemporalConditionModel
|
|
):
|
|
|
|
def forward(
|
|
self,
|
|
sample: torch.Tensor,
|
|
timestep: Union[torch.Tensor, float, int],
|
|
encoder_hidden_states: torch.Tensor,
|
|
added_time_ids: torch.Tensor,
|
|
return_dict: bool = True,
|
|
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
|
|
|
|
# 1. time
|
|
timesteps = timestep
|
|
if not torch.is_tensor(timesteps):
|
|
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
|
# This would be a good case for the `match` statement (Python 3.10+)
|
|
is_mps = sample.device.type == "mps"
|
|
if isinstance(timestep, float):
|
|
dtype = torch.float32 if is_mps else torch.float64
|
|
else:
|
|
dtype = torch.int32 if is_mps else torch.int64
|
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
|
elif len(timesteps.shape) == 0:
|
|
timesteps = timesteps[None].to(sample.device)
|
|
|
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
batch_size, num_frames = sample.shape[:2]
|
|
timesteps = timesteps.expand(batch_size)
|
|
|
|
t_emb = self.time_proj(timesteps)
|
|
|
|
# `Timesteps` does not contain any weights and will always return f32 tensors
|
|
# but time_embedding might actually be running in fp16. so we need to cast here.
|
|
# there might be better ways to encapsulate this.
|
|
t_emb = t_emb.to(dtype=self.conv_in.weight.dtype)
|
|
|
|
emb = self.time_embedding(t_emb) # [batch_size * num_frames, channels]
|
|
|
|
time_embeds = self.add_time_proj(added_time_ids.flatten())
|
|
time_embeds = time_embeds.reshape((batch_size, -1))
|
|
time_embeds = time_embeds.to(emb.dtype)
|
|
aug_emb = self.add_embedding(time_embeds)
|
|
emb = emb + aug_emb
|
|
|
|
# Flatten the batch and frames dimensions
|
|
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
|
|
sample = sample.flatten(0, 1)
|
|
# Repeat the embeddings num_video_frames times
|
|
# emb: [batch, channels] -> [batch * frames, channels]
|
|
emb = emb.repeat_interleave(num_frames, dim=0)
|
|
# encoder_hidden_states: [batch, frames, channels] -> [batch * frames, 1, channels]
|
|
encoder_hidden_states = encoder_hidden_states.flatten(0, 1).unsqueeze(1)
|
|
|
|
# 2. pre-process
|
|
sample = sample.to(dtype=self.conv_in.weight.dtype)
|
|
assert sample.dtype == self.conv_in.weight.dtype, (
|
|
f"sample.dtype: {sample.dtype}, "
|
|
f"self.conv_in.weight.dtype: {self.conv_in.weight.dtype}"
|
|
)
|
|
sample = self.conv_in(sample)
|
|
|
|
image_only_indicator = torch.zeros(
|
|
batch_size, num_frames, dtype=sample.dtype, device=sample.device
|
|
)
|
|
|
|
down_block_res_samples = (sample,)
|
|
for downsample_block in self.down_blocks:
|
|
if (
|
|
hasattr(downsample_block, "has_cross_attention")
|
|
and downsample_block.has_cross_attention
|
|
):
|
|
sample, res_samples = downsample_block(
|
|
hidden_states=sample,
|
|
temb=emb,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
image_only_indicator=image_only_indicator,
|
|
)
|
|
|
|
else:
|
|
sample, res_samples = downsample_block(
|
|
hidden_states=sample,
|
|
temb=emb,
|
|
image_only_indicator=image_only_indicator,
|
|
)
|
|
|
|
down_block_res_samples += res_samples
|
|
|
|
# 4. mid
|
|
sample = self.mid_block(
|
|
hidden_states=sample,
|
|
temb=emb,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
image_only_indicator=image_only_indicator,
|
|
)
|
|
|
|
# 5. up
|
|
for i, upsample_block in enumerate(self.up_blocks):
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
|
down_block_res_samples = down_block_res_samples[
|
|
: -len(upsample_block.resnets)
|
|
]
|
|
|
|
if (
|
|
hasattr(upsample_block, "has_cross_attention")
|
|
and upsample_block.has_cross_attention
|
|
):
|
|
sample = upsample_block(
|
|
hidden_states=sample,
|
|
res_hidden_states_tuple=res_samples,
|
|
temb=emb,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
image_only_indicator=image_only_indicator,
|
|
)
|
|
else:
|
|
sample = upsample_block(
|
|
hidden_states=sample,
|
|
res_hidden_states_tuple=res_samples,
|
|
temb=emb,
|
|
image_only_indicator=image_only_indicator,
|
|
)
|
|
|
|
# 6. post-process
|
|
sample = self.conv_norm_out(sample)
|
|
sample = self.conv_act(sample)
|
|
sample = self.conv_out(sample)
|
|
|
|
# 7. Reshape back to original shape
|
|
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])
|
|
|
|
if not return_dict:
|
|
return (sample,)
|
|
|
|
return UNetSpatioTemporalConditionOutput(sample=sample)
|