update claude md

This commit is contained in:
Alihan
2025-10-10 01:49:48 +03:00
parent 66b36e71e8
commit 06b8bc1304

678
CLAUDE.md
View File

@@ -2,565 +2,213 @@
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Overview
## Project Overview
This is a Whisper-based speech recognition service that provides high-performance audio transcription using Faster Whisper. The service runs as either:
**fast-whisper-mcp-server** is a high-performance audio transcription service built on faster-whisper with dual-server architecture:
- **MCP Server** (`whisper_server.py`): Model Context Protocol interface for LLM integration
- **REST API Server** (`api_server.py`): HTTP REST endpoints with FastAPI
1. **MCP Server** - For integration with Claude Desktop and other MCP clients
2. **REST API Server** - For HTTP-based integrations with async job queue support
The service features async job queue processing, GPU health monitoring with auto-reset, circuit breaker patterns, and comprehensive error handling. **GPU is required** - there is no CPU fallback.
Both servers share the same core transcription logic and can run independently or simultaneously on different ports.
## Core Commands
**Key Features:**
- Async job queue system for long-running transcriptions (prevents HTTP timeouts)
- GPU health monitoring with strict failure detection (prevents silent CPU fallback)
- **Automatic GPU driver reset** on CUDA errors with cooldown protection (handles sleep/wake issues)
- Dual-server architecture (MCP + REST API)
- Model caching for fast repeated transcriptions
- Automatic batch size optimization based on GPU memory
## Development Commands
### Environment Setup
### Running Servers
```bash
# Create and activate virtual environment
# MCP Server (for LLM integration via MCP)
./run_mcp_server.sh
# REST API Server (for HTTP clients)
./run_api_server.sh
# Both servers log to mcp.logs and api.logs respectively
```
### Testing
```bash
# Run core component tests (GPU health, job queue, validation)
python tests/test_core_components.py
# Run async API integration tests
python tests/test_async_api_integration.py
# Run end-to-end integration tests
python tests/test_e2e_integration.py
```
### GPU Management
```bash
# Reset GPU drivers without rebooting (requires sudo)
./reset_gpu.sh
# Check GPU status
nvidia-smi
# Monitor GPU during transcription
watch -n 1 nvidia-smi
```
### Installation
```bash
# Create virtual environment
python3.12 -m venv venv
source venv/bin/activate
# Install dependencies
# Install dependencies (check requirements.txt for CUDA-specific instructions)
pip install -r requirements.txt
# Install PyTorch with CUDA 12.6 support
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu126
# For CUDA 12.1
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu121
# For CPU-only
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cpu
```
### Running the Servers
#### MCP Server (for Claude Desktop)
```bash
# Using the startup script (recommended - sets all env vars)
./run_mcp_server.sh
# Direct Python execution (ensure PYTHONPATH includes src/)
export PYTHONPATH="$(pwd)/src:$PYTHONPATH"
python src/servers/whisper_server.py
# Using MCP CLI for development testing
mcp dev src/servers/whisper_server.py
```
#### REST API Server (for HTTP clients)
```bash
# Using the startup script (recommended - sets all env vars)
./run_api_server.sh
# Direct Python execution with uvicorn (ensure PYTHONPATH includes src/)
export PYTHONPATH="$(pwd)/src:$PYTHONPATH"
uvicorn src.servers.api_server:app --host 0.0.0.0 --port 8000
# Development mode with auto-reload
uvicorn src.servers.api_server:app --reload --host 0.0.0.0 --port 8000
```
#### Running Both Simultaneously
```bash
# Terminal 1: Start MCP server
./run_mcp_server.sh
# Terminal 2: Start REST API server
./run_api_server.sh
```
### Running Tests
```bash
# Run all tests (requires GPU)
python tests/test_core_components.py
python tests/test_e2e_integration.py
python tests/test_async_api_integration.py
# Or run individual test components
cd tests && python test_core_components.py
```
**Important**: All tests require GPU to be available. Tests will fail if CUDA is not properly configured.
### Docker
```bash
# Build Docker image
docker build -t whisper-mcp-server .
# Run with GPU support
docker run --gpus all -v /path/to/models:/models -v /path/to/outputs:/outputs whisper-mcp-server
# For CUDA 12.4:
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu124
```
## Architecture
### Directory Structure
```
.
├── src/ # Source code directory
│ ├── servers/ # Server implementations
│ ├── whisper_server.py # MCP server entry point
│ └── api_server.py # REST API server (async job queue)
│ ├── core/ # Core business logic
│ ├── transcriber.py # Transcription logic (single & batch)
│ │ ├── model_manager.py # Model lifecycle & caching
│ ├── job_queue.py # Async job queue manager
│ ├── gpu_health.py # GPU health monitoring
│ │ └── gpu_reset.py # GPU driver reset with cooldown
── utils/ # Utility modules
├── audio_processor.py # Audio validation & preprocessing
├── formatters.py # Output format conversion
├── test_audio_generator.py # Test audio generation for GPU checks
├── startup.py # Startup sequence orchestration
── circuit_breaker.py # Circuit breaker pattern implementation
│ └── input_validation.py # Input validation utilities
├── tests/ # Test suite (requires GPU)
│ ├── test_core_components.py # Core functionality tests
│ ├── test_e2e_integration.py # End-to-end integration tests
│ └── test_async_api_integration.py # Async API tests
├── run_mcp_server.sh # MCP server startup script
├── run_api_server.sh # API server startup script
├── reset_gpu.sh # GPU driver reset script
├── DEV_PLAN.md # Development plan for async features
├── requirements.txt # Python dependencies
└── pyproject.toml # Project configuration
src/
├── core/ # Core business logic
│ ├── transcriber.py # Main transcription logic with env var defaults
│ ├── model_manager.py # Whisper model loading/caching (GPU-only)
├── job_queue.py # Async FIFO job queue with worker thread
│ ├── gpu_health.py # Real GPU health checks with circuit breaker
└── gpu_reset.py # Automatic GPU driver reset logic
├── servers/ # Server implementations
│ ├── whisper_server.py # MCP server (stdio transport)
└── api_server.py # FastAPI REST server
└── utils/ # Utilities
── startup.py # Common startup sequence (GPU check, initialization)
├── circuit_breaker.py # Circuit breaker pattern implementation
├── audio_processor.py # Audio file validation
├── formatters.py # Output format handlers (txt, vtt, srt, json)
├── input_validation.py# Input validation utilities
── test_audio_generator.py # Generate test audio for health checks
```
### Core Components
### Key Architectural Patterns
1. **src/servers/whisper_server.py** - MCP server entry point
- Uses FastMCP framework to expose MCP tools
- Main tools: `get_model_info_api()`, `transcribe_async()`, `transcribe_upload()`, `check_job_status()`, `get_job_result()`
- Global job queue and health monitor instances
- Server initialization around line 31
**Async Job Queue** (`job_queue.py`):
- FIFO queue with background worker thread
- Disk persistence of job metadata to `JOB_METADATA_DIR`
- States: QUEUED → RUNNING → COMPLETED/FAILED
- Jobs include full request params + results
- Thread-safe operations with locks
2. **src/servers/api_server.py** - REST API server entry point
- Uses FastAPI framework for HTTP endpoints
- Provides REST endpoints: `/`, `/health`, `/models`, `/transcribe`, `/batch-transcribe`, `/upload-transcribe`
- Shares core transcription logic with MCP server
- File upload support via multipart/form-data
**GPU Health Monitoring** (`gpu_health.py`):
- Performs **real** GPU checks: loads tiny model + transcribes test audio
- Circuit breaker prevents repeated failures (3 failures → open, 60s timeout)
- Integration with GPU auto-reset on failures
- Background monitoring thread in `HealthMonitor` class
- Never falls back to CPU - raises RuntimeError if GPU unavailable
3. **src/core/transcriber.py** - Core transcription logic (shared by both servers)
- `transcribe_audio()`:39 - Single file transcription with environment variable support
- `batch_transcribe()`:209 - Batch processing with progress reporting
- All parameters support environment variable defaults (lines 21-37)
- Delegates output formatting to utils.formatters
**GPU Auto-Reset** (`gpu_reset.py`):
- Automatically resets GPU drivers via `reset_gpu.sh` when health checks fail
- Cooldown mechanism (default 5 min via `GPU_RESET_COOLDOWN_MINUTES`)
- Sudo required - script unloads/reloads nvidia kernel modules
- Integrated with circuit breaker to avoid reset loops
4. **src/core/model_manager.py** - Whisper model lifecycle management
- `get_whisper_model()`:44 - Returns cached model instances or loads new ones
- `test_gpu_driver()`:20 - GPU validation before model loading
- **CRITICAL**: GPU-only mode enforced at lines 64-90 (no CPU fallback)
- Global `model_instances` dict caches loaded models to prevent reloading
- Automatic batch size optimization based on GPU memory (lines 134-147)
**Startup Sequence** (`startup.py`):
- Common startup logic for both servers
- Phase 1: GPU health check with optional auto-reset
- Phase 2: Initialize job queue
- Phase 3: Initialize health monitor (background thread)
- Exits on GPU failure unless configured otherwise
5. **src/core/job_queue.py** - Async job queue manager
- `JobQueue` class manages FIFO queue with background worker thread
- `submit_job()` - Validates audio, checks GPU health, adds to queue
- `get_job_status()` - Returns current job status and queue position
- `get_job_result()` - Returns transcription result for completed jobs
- Jobs persist to disk as JSON files for crash recovery
- Single worker thread processes jobs sequentially (prevents GPU contention)
**Circuit Breaker** (`circuit_breaker.py`):
- States: CLOSED → OPEN → HALF_OPEN → CLOSED
- Configurable failure/success thresholds
- Prevents cascading failures and resource exhaustion
- Used for GPU health checks and model operations
6. **src/core/gpu_health.py** - GPU health monitoring
- `check_gpu_health()`:39 - Real GPU test using tiny model + test audio
- `GPUHealthStatus` dataclass contains detailed GPU metrics
- **CRITICAL**: Raises RuntimeError if device=cuda but GPU fails (lines 99-135)
- Prevents silent CPU fallback that would cause 10-100x slowdown
- `HealthMonitor` class for periodic background monitoring
### Environment Variables
7. **src/utils/audio_processor.py** - Audio file validation and preprocessing
- `validate_audio_file()`:15 - Checks file existence, format, and size
- `process_audio()`:50 - Decodes audio using faster_whisper's decode_audio
Both server scripts set extensive environment variables. Key ones:
8. **src/utils/formatters.py** - Output format conversion
- `format_vtt()`, `format_srt()`, `format_txt()`, `format_json()` - Convert segments to various formats
- All formatters accept segment lists from Whisper output
**GPU/CUDA**:
- `CUDA_VISIBLE_DEVICES`: GPU index (default: 1)
- `LD_LIBRARY_PATH`: CUDA library path
- `TRANSCRIPTION_DEVICE`: "cuda" or "auto" (never "cpu")
- `TRANSCRIPTION_COMPUTE_TYPE`: "float16", "int8", or "auto"
9. **src/utils/test_audio_generator.py** - Test audio generation
- `generate_test_audio()` - Creates synthetic 1-second audio for GPU health checks
- Uses numpy to generate sine wave, no external audio files needed
**Paths**:
- `WHISPER_MODEL_DIR`: Where Whisper models are cached
- `TRANSCRIPTION_OUTPUT_DIR`: Transcription output directory
- `TRANSCRIPTION_BATCH_OUTPUT_DIR`: Batch output directory
- `JOB_METADATA_DIR`: Job metadata persistence directory
10. **src/core/gpu_reset.py** - GPU driver reset with cooldown protection
- `reset_gpu_driver()` - Executes reset_gpu.sh script to reload NVIDIA drivers
- `check_reset_cooldown()` - Validates if enough time has passed since last reset
- Cooldown timestamp persists in `/tmp/whisper-gpu-last-reset`
- Prevents reset loops while allowing recovery from sleep/wake issues
**Transcription Defaults**:
- `TRANSCRIPTION_MODEL`: Model name (default: "large-v3")
- `TRANSCRIPTION_OUTPUT_FORMAT`: "txt", "vtt", "srt", or "json"
- `TRANSCRIPTION_BEAM_SIZE`: Beam search size (default: 5 for API, 2 for MCP)
- `TRANSCRIPTION_TEMPERATURE`: Sampling temperature (default: 0.0)
11. **src/utils/startup.py** - Startup sequence orchestration
- `startup_sequence()` - Coordinates GPU health check, queue initialization
- `cleanup_on_shutdown()` - Cleanup handler for graceful shutdown
- Centralizes startup logic shared by both servers
**Job Queue**:
- `JOB_QUEUE_MAX_SIZE`: Max queued jobs (default: 100 for MCP, 5 for API)
- `JOB_RETENTION_DAYS`: How long to keep job metadata (default: 7)
12. **src/utils/circuit_breaker.py** - Circuit breaker pattern implementation
- Provides fault tolerance for external service calls
- Prevents cascading failures
**Health Monitoring**:
- `GPU_HEALTH_CHECK_ENABLED`: Enable background monitoring (default: true)
- `GPU_HEALTH_CHECK_INTERVAL_MINUTES`: Check interval (default: 10)
- `GPU_HEALTH_TEST_MODEL`: Model for health checks (default: "tiny")
- `GPU_RESET_COOLDOWN_MINUTES`: Cooldown between reset attempts (default: 5)
13. **src/utils/input_validation.py** - Input validation utilities
- Validates and sanitizes user inputs
- Security layer for API endpoints
### API Workflow (Async Jobs)
### Key Architecture Patterns
Both MCP and REST API use the same async workflow:
- **Dual Server Architecture**: Both MCP and REST API servers import and use the same core modules (core.transcriber, core.model_manager, utils.audio_processor, utils.formatters), ensuring consistent behavior
- **Model Caching**: Models are cached in `model_instances` dictionary with key format `{model_name}_{device}_{compute_type}` (src/core/model_manager.py:104). This cache is shared if both servers run in the same process
- **Batch Processing**: CUDA devices automatically use BatchedInferencePipeline for performance (src/core/model_manager.py:132-160)
- **Environment Variable Configuration**: All transcription parameters support env var defaults (src/core/transcriber.py:21-37)
- **GPU-Only Mode**: Service is configured for GPU-only operation. `device="auto"` requires CUDA, `device="cpu"` is rejected (src/core/model_manager.py:64-90)
- **Async Job Queue**: Long-running transcriptions use async queue pattern to prevent HTTP timeouts. Jobs return immediately with job_id for polling
- **GPU Health Monitoring**: Real GPU tests with tiny model prevent silent CPU fallback. Jobs are rejected immediately if GPU fails rather than running 10-100x slower on CPU
1. **Submit job**: `transcribe_async()` returns `job_id` immediately
2. **Poll status**: `get_job_status(job_id)` returns status + queue_position
3. **Get result**: When status="completed", `get_job_result(job_id)` returns transcription
## Environment Variables
The job queue processes one job at a time in a background worker thread.
All configuration can be set via environment variables in run_mcp_server.sh and run_api_server.sh:
### Model Loading Strategy
**API Server Specific:**
- `API_HOST` - API server host (default: 0.0.0.0)
- `API_PORT` - API server port (default: 8000)
**Job Queue Configuration (if using async features):**
- `JOB_QUEUE_MAX_SIZE` - Maximum queue size (default: 100)
- `JOB_METADATA_DIR` - Directory for job metadata JSON files
- `JOB_RETENTION_DAYS` - Auto-cleanup old jobs (0=disabled)
**GPU Health Monitoring:**
- `GPU_HEALTH_CHECK_ENABLED` - Enable periodic GPU monitoring (true/false)
- `GPU_HEALTH_CHECK_INTERVAL_MINUTES` - Monitoring interval (default: 10)
- `GPU_HEALTH_TEST_MODEL` - Model for health checks (default: tiny)
**GPU Auto-Reset Configuration:**
- `GPU_RESET_COOLDOWN_MINUTES` - Minimum time between GPU reset attempts (default: 5 minutes)
- Prevents reset loops while allowing recovery from sleep/wake cycles
- Auto-reset is **enabled by default**
- Service terminates if GPU unavailable after reset attempt
**Transcription Configuration (shared by both servers):**
- `CUDA_VISIBLE_DEVICES` - GPU device selection
- `WHISPER_MODEL_DIR` - Model storage location (defaults to None for HuggingFace cache)
- `TRANSCRIPTION_OUTPUT_DIR` - Default output directory for single transcriptions
- `TRANSCRIPTION_BATCH_OUTPUT_DIR` - Default output directory for batch processing
- `TRANSCRIPTION_MODEL` - Model size (tiny, base, small, medium, large-v1, large-v2, large-v3)
- `TRANSCRIPTION_DEVICE` - Execution device (cuda, auto) - **NOTE: cpu is rejected in GPU-only mode**
- `TRANSCRIPTION_COMPUTE_TYPE` - Computation type (float16, int8, auto)
- `TRANSCRIPTION_OUTPUT_FORMAT` - Output format (vtt, srt, txt, json)
- `TRANSCRIPTION_BEAM_SIZE` - Beam search size (default: 5)
- `TRANSCRIPTION_TEMPERATURE` - Sampling temperature (default: 0.0)
- `TRANSCRIPTION_USE_TIMESTAMP` - Add timestamp to filenames (true/false)
- `TRANSCRIPTION_FILENAME_PREFIX` - Prefix for output filenames
- `TRANSCRIPTION_FILENAME_SUFFIX` - Suffix for output filenames
- `TRANSCRIPTION_LANGUAGE` - Language code (zh, en, ja, etc., auto-detect if not set)
## Supported Configurations
- **Models**: tiny, base, small, medium, large-v1, large-v2, large-v3
- **Audio formats**: .mp3, .wav, .m4a, .flac, .ogg, .aac
- **Output formats**: vtt, srt, json, txt
- **Languages**: zh (Chinese), en (English), ja (Japanese), ko (Korean), de (German), fr (French), es (Spanish), ru (Russian), it (Italian), pt (Portuguese), nl (Dutch), ar (Arabic), hi (Hindi), tr (Turkish), vi (Vietnamese), th (Thai), id (Indonesian)
## REST API Endpoints
The REST API server provides the following HTTP endpoints:
### GET /
Returns API information and available endpoints.
### GET /health
Health check endpoint. Returns `{"status": "healthy", "service": "whisper-transcription"}`.
### GET /models
Returns available Whisper models, devices, languages, and system information (GPU details if CUDA available).
### POST /transcribe
Transcribe a single audio file that exists on the server.
**Request Body:**
```json
{
"audio_path": "/path/to/audio.mp3",
"model_name": "large-v3",
"device": "auto",
"compute_type": "auto",
"language": "en",
"output_format": "txt",
"beam_size": 5,
"temperature": 0.0,
"initial_prompt": null,
"output_directory": null
}
```
**Response:**
```json
{
"success": true,
"message": "Transcription successful, results saved to: /path/to/output.txt",
"output_path": "/path/to/output.txt"
}
```
### POST /batch-transcribe
Batch transcribe all audio files in a folder.
**Request Body:**
```json
{
"audio_folder": "/path/to/audio/folder",
"output_folder": "/path/to/output",
"model_name": "large-v3",
"output_format": "txt",
...
}
```
**Response:**
```json
{
"success": true,
"summary": "Batch processing completed, total transcription time: 00:05:23 | Success: 10/10 | Failed: 0/10"
}
```
### POST /upload-transcribe
Upload an audio file and transcribe it immediately. Returns the transcription file as a download.
**Form Data:**
- `file`: Audio file (multipart/form-data)
- `model_name`: Model name (default: "large-v3")
- `device`: Device (default: "auto")
- `output_format`: Output format (default: "txt")
- ... (other transcription parameters)
**Response:** Returns the transcription file for download.
### API Usage Examples
```bash
# Get model information
curl http://localhost:8000/models
# Transcribe existing file (synchronous)
curl -X POST http://localhost:8000/transcribe \
-H "Content-Type: application/json" \
-d '{"audio_path": "/path/to/audio.mp3", "output_format": "txt"}'
# Upload and transcribe
curl -X POST http://localhost:8000/upload-transcribe \
-F "file=@audio.mp3" \
-F "output_format=txt" \
-F "model_name=large-v3"
# Async job queue (if enabled)
# Submit job
curl -X POST http://localhost:8000/jobs \
-H "Content-Type: application/json" \
-d '{"audio_path": "/path/to/audio.mp3"}'
# Returns: {"job_id": "abc-123", "status": "queued", "queue_position": 1}
# Check status
curl http://localhost:8000/jobs/abc-123
# Returns: {"status": "running", ...}
# Get result (when completed)
curl http://localhost:8000/jobs/abc-123/result
# Returns: transcription text
# Check GPU health
curl http://localhost:8000/health/gpu
# Returns: {"gpu_available": true, "gpu_working": true, ...}
```
## GPU Auto-Reset Configuration
### Overview
This service features automatic GPU driver reset on CUDA errors, which is especially useful for recovering from sleep/wake cycles. The reset functionality is **enabled by default** and includes cooldown protection to prevent reset loops.
### How It Works
1. **Startup Check**: When the service starts, it performs a GPU health check
- If CUDA errors detected → automatic reset attempt → retry
- If retry fails → service terminates
2. **Runtime Check**: Before job submission and model loading
- If CUDA errors detected → automatic reset attempt → retry
- If retry fails → job rejected, service continues
3. **Cooldown Protection**: Prevents reset loops
- Minimum 5 minutes between reset attempts (configurable via `GPU_RESET_COOLDOWN_MINUTES`)
- Cooldown persists across restarts (stored in `/tmp/whisper-gpu-last-reset`)
- If reset needed but cooldown active → service/job fails immediately
### Manual GPU Reset
You can manually reset the GPU anytime:
```bash
./reset_gpu.sh
```
Or clear the cooldown to allow immediate reset:
```python
from core.gpu_reset import clear_reset_cooldown
clear_reset_cooldown()
```
### Behavior Examples
**After sleep/wake with GPU issue:**
```
Service starts → GPU check fails (CUDA error)
→ Cooldown OK → Reset drivers → Wait 3s → Retry
→ Success → Service continues
```
**Multiple failures (hardware issue):**
```
First failure → Reset → Retry fails → Job fails
Second failure within 5 min → Cooldown active → Fail immediately
(Prevents reset loop)
```
**Normal operation:**
```
No CUDA errors → No resets → Normal performance
Reset only happens on actual CUDA failures
```
- Models are cached in `model_instances` dict (key: model_name + device + compute_type)
- First load downloads model to `WHISPER_MODEL_DIR` (or default cache)
- GPU health check on model load - may trigger auto-reset if GPU fails
- No CPU fallback - raises `RuntimeError` if CUDA unavailable
## Important Implementation Details
### GPU-Only Architecture
- **CRITICAL**: Service enforces GPU-only mode. CPU device is explicitly rejected (src/core/model_manager.py:84-90)
- `device="auto"` requires CUDA to be available, raises RuntimeError if not (src/core/model_manager.py:64-73)
- GPU health checks use real model loading + transcription, not just torch.cuda.is_available()
- If GPU health check fails, jobs are rejected immediately rather than silently falling back to CPU
- **GPU Auto-Reset**: Automatic driver reset on CUDA errors with 5-minute cooldown (handles sleep/wake issues)
**GPU-Only Architecture**:
- All `device="auto"` resolution checks `torch.cuda.is_available()` and raises error if False
- No silent fallback to CPU anywhere in the codebase
- Health checks verify model actually ran on GPU (check `torch.cuda.memory_allocated`)
### Model Management
- GPU memory is checked before loading models (src/core/model_manager.py:115-127)
- Batch size dynamically adjusts: 32 (>16GB), 16 (>12GB), 8 (>8GB), 4 (>4GB), 2 (otherwise)
- Models are cached globally in `model_instances` dict, shared across requests
- Model loading includes GPU driver test to fail fast if GPU is unavailable (src/core/model_manager.py:112-114)
**Thread Safety**:
- `JobQueue` uses `threading.Lock` for job dictionary access
- Worker thread processes jobs from `queue.Queue` (thread-safe FIFO)
- `HealthMonitor` runs in separate daemon thread
### Transcription Settings
- VAD (Voice Activity Detection) is enabled by default for better long-audio accuracy (src/core/transcriber.py:102)
- Word timestamps are enabled by default (src/core/transcriber.py:107)
- Files over 1GB generate warnings about processing time (src/utils/audio_processor.py:42)
- Default output format is "txt" for REST API, configured via environment variables for MCP server
**Error Handling**:
- Circuit breaker prevents retry storms on GPU failures
- Input validation rejects invalid audio files, model names, languages
- Job errors are captured and stored in job metadata with status=FAILED
### Async Job Queue (if enabled)
- Single worker thread processes jobs sequentially (prevents GPU memory contention)
- Jobs persist to disk as JSON files in JOB_METADATA_DIR
- Queue has max size limit (default 100), returns 503 when full
- Job status polling recommended every 5-10 seconds for LLM agents
**Shutdown Handling**:
- `cleanup_on_shutdown()` waits for current job to complete
- Stops health monitor thread
- Saves final job states to disk
## Development Workflow
## Common Development Tasks
### Running Tests
**Adding a new output format**:
1. Add formatter function in `src/utils/formatters.py`
2. Add case in `transcribe_audio()` in `src/core/transcriber.py`
3. Update API docs and MCP tool descriptions
The test suite requires GPU access. Ensure CUDA is properly configured before running tests.
**Adjusting GPU health check behavior**:
1. Modify circuit breaker params in `src/core/gpu_health.py`
2. Adjust health check interval in environment variables
3. Consider cooldown timing in `src/core/gpu_reset.py`
```bash
# Set PYTHONPATH to include src directory
export PYTHONPATH="$(pwd)/src:$PYTHONPATH"
**Testing GPU reset logic**:
1. Manually trigger GPU failure (e.g., occupy all GPU memory)
2. Watch logs for circuit breaker state transitions
3. Verify reset attempt with cooldown enforcement
4. Check `nvidia-smi` before/after reset
# Run core component tests (GPU health, job queue, audio validation)
python tests/test_core_components.py
# Run end-to-end integration tests
python tests/test_e2e_integration.py
# Run async API integration tests
python tests/test_async_api_integration.py
```
Tests will automatically:
- Check for GPU availability (exit if not available)
- Validate audio file processing
- Test GPU health monitoring
- Test job queue operations
- Test transcription pipeline
### Testing GPU Health
```python
# Test GPU health check manually
from src.core.gpu_health import check_gpu_health
status = check_gpu_health(expected_device="cuda")
print(f"GPU Working: {status.gpu_working}")
print(f"Device: {status.device_used}")
print(f"Test Duration: {status.test_duration_seconds}s")
# Expected: <1s for GPU, 3-10s for CPU
```
### Testing Job Queue
```python
# Test job queue manually
from src.core.job_queue import JobQueue
queue = JobQueue(max_queue_size=100, metadata_dir="/tmp/jobs")
queue.start()
# Submit job
job_info = queue.submit_job(
audio_path="/path/to/test.mp3",
model_name="large-v3",
device="cuda"
)
print(f"Job ID: {job_info['job_id']}")
# Poll status
status = queue.get_job_status(job_info['job_id'])
print(f"Status: {status['status']}")
# Get result when completed
result = queue.get_job_result(job_info['job_id'])
```
### Common Debugging
**Model loading issues:**
- Check `WHISPER_MODEL_DIR` is set correctly
- Verify GPU memory with `nvidia-smi`
- Check logs for GPU driver test failures at model_manager.py:112-114
**GPU not detected:**
- Verify `CUDA_VISIBLE_DEVICES` is set correctly
- Check `torch.cuda.is_available()` returns True
- Run GPU health check to see detailed error
**Silent failures:**
- Check that service is NOT silently falling back to CPU
- GPU health check should RAISE errors, not log warnings
- If device=cuda fails, the job should be rejected, not processed on CPU
**Job queue issues:**
- Check `JOB_METADATA_DIR` exists and is writable
- Verify background worker thread is running (check logs)
- Job metadata files are in {JOB_METADATA_DIR}/{job_id}.json
### File Locations
- **Logs**: `mcp.logs` (MCP server), `api.logs` (API server)
- **Models**: `$WHISPER_MODEL_DIR` or HuggingFace cache
- **Outputs**: `$TRANSCRIPTION_OUTPUT_DIR` or `$TRANSCRIPTION_BATCH_OUTPUT_DIR`
- **Job Metadata**: `$JOB_METADATA_DIR/{job_id}.json`
### Important Development Notes
- See `DEV_PLAN.md` for detailed architecture and implementation plan for async job queue features
- The service is designed for GPU-only operation - CPU fallback is intentionally disabled to prevent silent performance degradation
- When modifying model_manager.py, maintain the strict GPU-only enforcement
- When adding new endpoints, follow the async pattern if transcription time >30 seconds
**Debugging job queue issues**:
1. Check job metadata files in `JOB_METADATA_DIR`
2. Look for lock contention in logs
3. Verify worker thread is running (check logs for "Job queue worker started")
4. Test with `JOB_QUEUE_MAX_SIZE=1` to isolate serialization