mirror of
https://github.com/zjunlp/Generative_KG_Construction_Papers.git
synced 2023-07-18 10:12:48 +03:00
1
1
This commit is contained in:
159
README.md
159
README.md
@@ -1,118 +1,63 @@
|
||||
# GenKGC_Papers
|
||||
<p align="center">
|
||||
<img src="./logo.png" width="300"/>
|
||||
<p>
|
||||
<!--
|
||||
<h1 align="center">
|
||||
<p>Generative Knowledge Graph Construction: A Review</p>
|
||||
</h1> -->
|
||||
|
||||
###
|
||||
**[:bell: News! :bell: ]
|
||||
We have released a new survey paper based on this repository, with a perspective of existing Generative Knowledge Graph Construction! We are looking forward to any comments or discussions on this topic :)**
|
||||
|
||||
|
||||
### Label-augmented Text
|
||||
- [Structured Prediction as Translation between Augmented Natural Languages](https://openreview.net/pdf?id=US-TP-xnXI)
|
||||
|
||||
- [Augmented Natural Language for Generative Sequence Labeling](https://aclanthology.org/2020.emnlp-main.27.pdf)
|
||||
|
||||
- [AUTOREGRESSIVE ENTITY RETRIEVAL](https://openreview.net/pdf?id=5k8F6UU39V)
|
||||
|
||||
### Copy Mechanism
|
||||
|
||||
- [Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism](https://aclanthology.org/P18-1047.pdf)
|
||||
|
||||
- [Learning the Extraction Order of Multiple Relational Facts in a Sentence with Reinforcement Learning](https://aclanthology.org/D19-1035.pdf)
|
||||
|
||||
- [CopyMTL: Copy Mechanism for Joint Extraction of Entities and Relations with Multi-Task Learning](https://ojs.aaai.org/index.php/AAAI/article/view/6495)
|
||||
|
||||
- [Document-level Entity-based Extraction as Template Generation](https://arxiv.org/pdf/2109.04901.pdf)
|
||||
|
||||
### Generating Word Indices
|
||||
|
||||
- [A Unified Generative Framework for Various NER Subtasks](https://aclanthology.org/2021.acl-long.451.pdf)
|
||||
|
||||
- [A Unified Generative Framework for Aspect-Based Sentiment Analysis](https://aclanthology.org/2021.acl-long.188.pdf)
|
||||
| Survey Paper | Publish |
|
||||
| :--------- |:----------:|
|
||||
| :triangular_flag_on_post: [**A Survey on Knowledge Graphs: Representation, Acquisition, and Applications**](https://ieeexplore.ieee.org/document/9416312) | TNNLS 2022 |
|
||||
| [Multi-Modal Knowledge Graph Construction and Application: A Survey](https://arxiv.org/abs/2202.05786) | Arxiv 2022 |
|
||||
| [Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey](https://arxiv.org/abs/2111.01243) | Arxiv 2021 |
|
||||
|
||||
|
||||
- [Don’t Parse, Generate! A Sequence to Sequence Architecture for Task-Oriented Semantic Parsing](https://dl.acm.org/doi/pdf/10.1145/3366423.3380064)
|
||||
| Pre-print Paper | Method | Conference | Code |
|
||||
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------:|:----------:|:----------------------------------------------------------------------:|
|
||||
| [Unified Structure Generation for Universal Information Extraction](https://aclanthology.org/2022.acl-long.395/) | Structure-linearized | ACL 2022 | [UIE](https://github.com/universal-ie/UIE) |
|
||||
| [De-Bias for Generative Extraction in Unified NER Task](https://aclanthology.org/2022.acl-long.59/) | Structure-linearized | ACL 2022 | - |
|
||||
| [DeepStruct: Pretraining of Language Models for Structure Prediction](https://arxiv.org/pdf/2205.10475.pdf) | Structure-linearized | ACL 2022 | [DeepStruct](https://github.com/cgraywang/deepstruct) |
|
||||
| [Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction](https://aclanthology.org/2022.acl-long.317/) | Blank-based | ACL 2022 | [X-GEAR](https://github.com/PlusLabNLP/X-Gear) |
|
||||
| [Dynamic Prefix-Tuning for Generative Template-based Event Extraction](https://aclanthology.org/2022.acl-long.358/) | Blank-based | ACL 2022 | - |
|
||||
| [ClarET: Pre-training a Correlation-Aware Context-To-Event Transformer for Event-Centric Generation and Classification](https://aclanthology.org/2022.acl-long.183/) | Blank-based | ACL 2022 | - |
|
||||
| [Explanation Graph Generation via Pre-trained Language Models: An Empirical Study with Contrastive Learning](https://aclanthology.org/2022.acl-long.85/) | Structure-linearized | ACL 2022 | [HuSe-Gen](https://github.com/swarnaHub/ExplagraphGen) |
|
||||
| [Improving Candidate Retrieval with Entity Profile Generation for Wikidata Entity Linking](https://aclanthology.org/2022.findings-acl.292/) | Structure-linearized | ACL 2022 | [EPGEL](https://github.com/laituan245/EL-Dockers/) |
|
||||
| [From Discrimination to Generation: Knowledge Graph Completion with Generative Transformer](https://arxiv.org/abs/2202.02113) | Structure-linearized | WWW 2022 | [GenKGC](https://github.com/zjunlp/PromptKG/tree/main/research/GenKGC) |
|
||||
| [REBEL: Relation Extraction By End-to-end Language generation](https://aclanthology.org/2021.findings-emnlp.204/) | Structure-linearized | EMNLP 2021 | [REBEL](https://github.com/babelscape/rebel) |
|
||||
| [Document-level Entity-based Extraction as Template Generation](https://aclanthology.org/2021.emnlp-main.426/) | Copy-based | EMNLP 2021 | [TEMPGEN](https://github.com/PlusLabNLP/TempGen) |
|
||||
| [DEGREE: A Data-Efficient Generation-Based Event Extraction Model](https://arxiv.org/abs/2108.12724) | Blank-based | NAACL 2022 | [DEGREE](https://github.com/PlusLabNLP/DEGREE) |
|
||||
| [HySPA: Hybrid Span Generation for Scalable Text-to-Graph Extraction](https://aclanthology.org/2021.findings-acl.356/) | Structure-linearized | ACL 2021 | [HySPA](https://github.com/renll/HySPA) |
|
||||
| [Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction](https://aclanthology.org/2021.acl-long.217/) | Structure-linearized | ACL 2021 | [Text2Event](https://github.com/luyaojie/text2event) |
|
||||
| [Template Filling with Generative Transformers](https://aclanthology.org/2021.naacl-main.70/) | Blank-based | NAACL 2021 | [GTT](https://github.com/xinyadu/gtt) |
|
||||
| [A Unified Generative Framework for Aspect-based Sentiment Analysis](https://aclanthology.org/2021.acl-long.188/) | Indice-based | ACL 2021 | [BARTABSA](https://github.com/yhcc/BARTABSA) |
|
||||
| [A Unified Generative Framework for Various NER Subtasks](https://aclanthology.org/2021.acl-long.451/) | Indice-based | ACL 2021 | [BARTNER](https://github.com/yhcc/BARTNER) |
|
||||
| [GRIT: Generative Role-filler Transformers for Document-level Event Entity Extraction](https://aclanthology.org/2021.eacl-main.52/) | Indice-based | EACL2021 | [GRIT](https://github.com/xinyadu/grit_doc_event_entity) |
|
||||
| [Document-Level Event Argument Extraction by Conditional Generation](https://aclanthology.org/2021.naacl-main.69/) | Blank-based | NAACL 2021 | [BART-Gen](https://github.com/raspberryice/gen-arg) |
|
||||
| [Structured Prediction as Translation between Augmented Natural Languages](https://openreview.net/forum?id=US-TP-xnXI) | Label-augmented | ICLR 2021 | [TANL](https://github.com/amazon-research/tanl) |
|
||||
| [Intent Classification and Slot Filling for Privacy Policies](https://aclanthology.org/2021.acl-long.340/) | Structure-linearized | ACL 2021 | [PolicyIE](https://github.com/wasiahmad/PolicyIE) |
|
||||
| [Autoregressive Entity Retrieval](https://openreview.net/forum?id=5k8F6UU39V) | Label-augmented | ICLR 2021 | [GENRE](https://github.com/facebookresearch/GENRE) |
|
||||
| [Augmented Natural Language for Generative Sequence Labeling](https://aclanthology.org/2020.emnlp-main.27/) | Label-augmented | EMNLP 2020 | - |
|
||||
| [Contrastive Information Extraction With Generative Transformer](https://ieeexplore.ieee.org/document/9537684) | Structure-linearized | TASLP 2021 | - |
|
||||
| [Don’t Parse, Generate! A Sequence to Sequence Architecture for Task-Oriented Semantic Parsing](https://dl.acm.org/doi/10.1145/3366423.3380064) | Indice-based | WWW 2022 | - |
|
||||
| [CopyMTL: Copy Mechanism for Joint Extraction of Entities and Relations with Multi-Task Learning](https://ojs.aaai.org/index.php/AAAI/article/view/6495) | Copy-based | AAAI 2020 | [CopyMTL](https://github.com/WindChimeRan/CopyMTL) |
|
||||
| [Effective Modeling of Encoder-Decoder Architecture for Joint Entity and Relation Extraction](https://ojs.aaai.org/index.php/AAAI/article/view/6374) | Indice-based | AAAI 2020 | [PNDec](https://github.com/nusnlp/PtrNetDecoding4JERE) |
|
||||
| [Learning the Extraction Order of Multiple Relational Facts in a Sentence with Reinforcement Learning](https://aclanthology.org/D19-1035/) | Copy-based | EMNLP 2019 | - |
|
||||
| [Neural Architectures for Nested NER through Linearization](https://aclanthology.org/P19-1527/) | Structure-linearized | ACL 2019 | - |
|
||||
| [Exploring Sequence-to-Sequence Learning in Aspect Term Extraction](https://aclanthology.org/P19-1344/) | Structure-linearize | ACL 2019 | - |
|
||||
| [COMET: Commonsense Transformers for Automatic Knowledge Graph Construction](https://aclanthology.org/P19-1470/) | Blank-based | ACL 2019 | [COMET](https://github.com/atcbosselut/comet-commonsense) |
|
||||
| [Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism](https://aclanthology.org/P18-1047/) | Copy-based | ACL 2018 | - |
|
||||
|
||||
- [Effective Modeling of Encoder-Decoder Architecture for Joint Entity and Relation Extraction](https://ojs.aaai.org/index.php/AAAI/article/view/6374)
|
||||
|
||||
- [GRIT: Generative Role-filler Transformers for Document-level Event Entity Extraction](https://aclanthology.org/2021.eacl-main.52.pdf)
|
||||
|
||||
|
||||
### Generating Answers
|
||||
|
||||
- [Event Extraction by Answering (Almost) Natural Questions](https://aclanthology.org/2020.emnlp-main.49.pdf)
|
||||
|
||||
- [Event Extraction as Machine Reading Comprehension](https://aclanthology.org/2020.emnlp-main.128.pdf)
|
||||
|
||||
- [Event Extraction as Multi-turn Question Answering](https://aclanthology.org/2020.findings-emnlp.73.pdf)
|
||||
|
||||
- [Can Generative Pre-trained Language Models Serve As Knowledge Bases for Closed-book QA?](https://aclanthology.org/2021.acl-long.251.pdf)
|
||||
|
||||
- [Answer Generation for Retrieval-based Question Answering Systems](https://aclanthology.org/2021.findings-acl.374.pdf)
|
||||
|
||||
|
||||
### Filling Templates
|
||||
|
||||
- [Document-Level Event Argument Extraction by Conditional Generation](https://aclanthology.org/2021.naacl-main.69.pdf)
|
||||
|
||||
- [Template Filling with Generative Transformers](https://aclanthology.org/2021.naacl-main.70.pdf)
|
||||
|
||||
- [ClarET: Pre-training a Correlation-Aware Context-To-Event Transformer for Event-Centric Generation and Classification](https://aclanthology.org/2022.acl-long.183.pdf)
|
||||
|
||||
- [Dynamic Prefix-Tuning for Generative Template-based Event Extraction](https://aclanthology.org/2022.acl-long.358.pdf)
|
||||
|
||||
- [Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction](https://aclanthology.org/2022.acl-long.317.pdf)
|
||||
|
||||
- [Document-level Entity-based Extraction as Template Generation](https://aclanthology.org/2021.emnlp-main.426.pdf)
|
||||
|
||||
- [DEGREE: A Data-Efficient Generation-Based Event Extraction Model](https://arxiv.org/pdf/2108.12724.pdf)
|
||||
|
||||
|
||||
### Tagging Texts
|
||||
|
||||
- [Neural Architectures for Nested NER through Linearization](https://aclanthology.org/P19-1527.pdf)
|
||||
|
||||
- [Exploring Sequence-to-Sequence Learning in Aspect Term Extraction](https://aclanthology.org/P19-1344.pdf)
|
||||
## TIPS
|
||||
If you find this repository useful to your research or work, it is really appreciate to star this repository.
|
||||
|
||||
|
||||
|
||||
### Structurelinearized Texts
|
||||
|
||||
- [Contrastive Information Extraction With Generative Transformer](https://ieeexplore.ieee.org/document/9537684)
|
||||
- [Contrastive Triple Extraction with Generative Transformer](https://ojs.aaai.org/index.php/AAAI/article/view/17677)
|
||||
|
||||
- [HySPA: Hybrid Span Generation for Scalable Text-to-Graph Extraction](https://aclanthology.org/2021.findings-acl.356.pdf)
|
||||
|
||||
- [Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction](https://aclanthology.org/2021.acl-long.217.pdf)
|
||||
|
||||
- [Intent Classification and Slot Filling for Privacy Policies](https://aclanthology.org/2021.acl-long.340.pdf)
|
||||
|
||||
- [Unified Structure Generation for Universal Information Extraction](https://arxiv.org/pdf/2203.12277.pdf)
|
||||
|
||||
- [Relation Extraction By End-to-end Language generation](https://aclanthology.org/2021.findings-emnlp.204.pdf)
|
||||
|
||||
- [From Discrimination to Generation: Knowledge Graph Completion with Generative Transformer](https://arxiv.org/pdf/2202.02113.pdf)
|
||||
|
||||
- [De-Bias for Generative Extraction in Unified NER Task](https://aclanthology.org/2022.acl-long.59/)
|
||||
|
||||
- [Explanation Graph Generation via Pre-trained Language Models:An Empirical Study with Contrastive Learning](https://aclanthology.org/2022.acl-long.85/)
|
||||
|
||||
- [Improving Candidate Retrieval with Entity Profile Generation for Wikidata Entity Linking](https://arxiv.org/pdf/2202.13404.pdf)
|
||||
|
||||
|
||||
|
||||
### Non-autogressive
|
||||
|
||||
- [Joint Entity and Relation Extraction with Set Prediction Networks](http://arxiv.org/abs/2011.01675)
|
||||
|
||||
- [Minimize Exposure Bias of Seq2Seq Models in Joint Entity and Relation Extraction](https://aclanthology.org/2020.findings-emnlp.23.pdf)
|
||||
|
||||
- [Set Generation Networks for End-to-End Knowledge Base Population](https://aclanthology.org/2021.emnlp-main.760/)
|
||||
|
||||
|
||||
### Ranking Input-output Pairs
|
||||
|
||||
- [Beyond [CLS] through Ranking by Generation](https://aclanthology.org/2020.emnlp-main.134.pdf)
|
||||
|
||||
- [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://aclanthology.org/2020.findings-emnlp.63.pdf)
|
||||
|
||||
- [Autoregressive Entity Retrieval](https://openreview.net/pdf?id=5k8F6UU39V)
|
||||
|
||||
- [Template-Based Named Entity Recognition Using BART](https://aclanthology.org/2021.findings-acl.161.pdf)
|
||||
|
||||
### Combinations
|
||||
|
||||
|
||||
Reference in New Issue
Block a user