diff --git a/eval/eval_mhqa.py b/eval/eval_mhqa.py index 7075445..3dd5664 100644 --- a/eval/eval_mhqa.py +++ b/eval/eval_mhqa.py @@ -68,7 +68,7 @@ def wrap_embedding_func_with_attrs(**kwargs): @wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=8192) async def GLM_embedding(texts: list[str]) -> np.ndarray: model_name = GLM_MODEL # "embedding-3" - client = OpenAI( + client = AsyncOpenAI( api_key=GLM_API_KEY, base_url=GLM_URL ) @@ -82,7 +82,7 @@ async def GLM_embedding(texts: list[str]) -> np.ndarray: @wrap_embedding_func_with_attrs(embedding_dim=4096, max_token_size=8192) async def NV_embedding(texts: list[str]) -> np.ndarray: model_name = NVIDIA_MODEL # "nvidia/nv-embed-v1" - client = OpenAI( + client = AsyncOpenAI( api_key=NVIDIA_API_KEY, base_url=NVIDIA_URL, ) diff --git a/eval/test_deepseek.py b/eval/test_deepseek.py index d4b86b9..14add06 100644 --- a/eval/test_deepseek.py +++ b/eval/test_deepseek.py @@ -59,7 +59,7 @@ def wrap_embedding_func_with_attrs(**kwargs): @wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=8192) async def GLM_embedding(texts: list[str]) -> np.ndarray: model_name = "embedding-3" - client = OpenAI( + client = AsyncOpenAI( api_key=GLM_API_KEY, base_url="https://open.bigmodel.cn/api/paas/v4/" ) diff --git a/eval/test_glm.py b/eval/test_glm.py index 23799f0..407eccc 100644 --- a/eval/test_glm.py +++ b/eval/test_glm.py @@ -50,7 +50,7 @@ def wrap_embedding_func_with_attrs(**kwargs): @wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=8192) async def GLM_embedding(texts: list[str]) -> np.ndarray: model_name = "embedding-3" - client = OpenAI( + client = AsyncOpenAI( api_key=GLM_API_KEY, base_url="https://open.bigmodel.cn/api/paas/v4/" ) diff --git a/hi_Search_deepseek.py b/hi_Search_deepseek.py index 12f7cbf..41bba1a 100644 --- a/hi_Search_deepseek.py +++ b/hi_Search_deepseek.py @@ -42,7 +42,7 @@ def wrap_embedding_func_with_attrs(**kwargs): @wrap_embedding_func_with_attrs(embedding_dim=config['model_params']['glm_embedding_dim'], max_token_size=config['model_params']['max_token_size']) async def GLM_embedding(texts: list[str]) -> np.ndarray: model_name = "embedding-3" - client = OpenAI( + client = AsyncOpenAI( api_key=GLM_API_KEY, base_url=GLM_URL ) diff --git a/hi_Search_glm.py b/hi_Search_glm.py index 4a39452..9486f99 100644 --- a/hi_Search_glm.py +++ b/hi_Search_glm.py @@ -39,7 +39,7 @@ def wrap_embedding_func_with_attrs(**kwargs): @wrap_embedding_func_with_attrs(embedding_dim=config['model_params']['glm_embedding_dim'], max_token_size=config['model_params']['max_token_size']) async def GLM_embedding(texts: list[str]) -> np.ndarray: model_name = config['glm']['embedding_model'] - client = OpenAI( + client = AsyncOpenAI( api_key=GLM_API_KEY, base_url=GLM_URL ) diff --git a/hi_Search_openai.py b/hi_Search_openai.py index 6b4648e..1efe715 100644 --- a/hi_Search_openai.py +++ b/hi_Search_openai.py @@ -50,7 +50,7 @@ async def OPENAI_embedding(texts: list[str]) -> np.ndarray: @wrap_embedding_func_with_attrs(embedding_dim=config['model_params']['glm_embedding_dim'], max_token_size=config['model_params']['max_token_size']) async def GLM_embedding(texts: list[str]) -> np.ndarray: model_name = config['glm']['embedding_model'] - client = OpenAI( + client = AsyncOpenAI( api_key=GLM_API_KEY, base_url=GLM_URL )