Files
HiRAG/hirag/_llm.py
2025-03-14 11:13:03 +08:00

190 lines
5.9 KiB
Python

import numpy as np
from openai import AsyncOpenAI, AsyncAzureOpenAI, APIConnectionError, RateLimitError
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
import os
from ._utils import compute_args_hash, wrap_embedding_func_with_attrs
from .base import BaseKVStorage
global_openai_async_client = None
global_azure_openai_async_client = None
def get_openai_async_client_instance():
global global_openai_async_client
if global_openai_async_client is None:
global_openai_async_client = AsyncOpenAI()
return global_openai_async_client
def get_azure_openai_async_client_instance():
global global_azure_openai_async_client
if global_azure_openai_async_client is None:
global_azure_openai_async_client = AsyncAzureOpenAI()
return global_azure_openai_async_client
@retry(
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError)),
)
async def openai_complete_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
openai_async_client = get_openai_async_client_instance()
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
if hashing_kv is not None:
await hashing_kv.upsert(
{args_hash: {"return": response.choices[0].message.content, "model": model}}
)
await hashing_kv.index_done_callback()
return response.choices[0].message.content
async def gpt_4o_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-4o",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
async def gpt_35_turbo_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-3.5-turbo",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
async def gpt_4o_mini_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-4o-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
@retry(
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError)),
)
async def openai_embedding(texts: list[str]) -> np.ndarray:
openai_async_client = get_openai_async_client_instance()
response = await openai_async_client.embeddings.create(
model="text-embedding-3-small", input=texts, encoding_format="float"
)
return np.array([dp.embedding for dp in response.data])
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError)),
)
async def azure_openai_complete_if_cache(
deployment_name, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
azure_openai_client = get_azure_openai_async_client_instance()
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(deployment_name, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
response = await azure_openai_client.chat.completions.create(
model=deployment_name, messages=messages, **kwargs
)
if hashing_kv is not None:
await hashing_kv.upsert(
{
args_hash: {
"return": response.choices[0].message.content,
"model": deployment_name,
}
}
)
await hashing_kv.index_done_callback()
return response.choices[0].message.content
async def azure_gpt_4o_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await azure_openai_complete_if_cache(
"gpt-4o",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
async def azure_gpt_4o_mini_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await azure_openai_complete_if_cache(
"gpt-4o-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError)),
)
async def azure_openai_embedding(texts: list[str]) -> np.ndarray:
azure_openai_client = get_azure_openai_async_client_instance()
response = await azure_openai_client.embeddings.create(
model="text-embedding-3-small", input=texts, encoding_format="float"
)
return np.array([dp.embedding for dp in response.data])