mirror of
https://github.com/BaranziniLab/KG_RAG.git
synced 2024-06-08 14:12:54 +03:00
154 lines
3.6 KiB
Plaintext
154 lines
3.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "945c420e-bb44-4ffb-b899-e049caf0d918",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"os.chdir('..')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "f2bdefb3-3e59-409a-81b4-2e9ffbdfdb1a",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"/root/anaconda3/envs/kg_rag_test_2/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
|
" from .autonotebook import tqdm as notebook_tqdm\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"from kg_rag.utility import *\n",
|
|
"from tqdm import tqdm\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "19fc98b9-64a8-40c0-9e5a-92b4392e6969",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"data = pd.read_csv('data/dataset_for_entity_retrieval_accuracy_analysis.csv')\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "2851be4c-2a76-4f6d-b5f4-118e8122b155",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"VECTOR_DB_PATH = config_data[\"VECTOR_DB_PATH\"]\n",
|
|
"SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL = config_data[\"SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL\"]\n",
|
|
"\n",
|
|
"vectorstore = load_chroma(VECTOR_DB_PATH, SENTENCE_EMBEDDING_MODEL_FOR_NODE_RETRIEVAL)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"id": "7255fbab-d8b4-43a3-b870-9d67ad79d061",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"322it [00:05, 56.20it/s]"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"CPU times: user 4.74 s, sys: 896 ms, total: 5.64 s\n",
|
|
"Wall time: 5.73 s\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%%time\n",
|
|
"\n",
|
|
"correct_retrieval = 0\n",
|
|
"\n",
|
|
"for index, row in tqdm(data.iterrows()):\n",
|
|
" question = row['text']\n",
|
|
" entities = disease_entity_extractor_v2(question) \n",
|
|
" for entity in entities:\n",
|
|
" node_search_result = vectorstore.similarity_search_with_score(entity, k=1)\n",
|
|
" if node_search_result[0][0].page_content == row['node_hits']:\n",
|
|
" correct_retrieval += 1 \n",
|
|
" break\n",
|
|
" \n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"id": "2f997335-bff7-431c-bbd8-608513eddcc7",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Retrieval accuracy is 99.7%\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"retrieval_accuracy = 100*correct_retrieval/data.shape[0]\n",
|
|
"print(f'Retrieval accuracy is {round(retrieval_accuracy,1)}%')\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "afe971ab-b8b9-4c88-9657-c588813b412f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.9"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|