Files
Kokoro-TTS-Local/gradio_interface.py
Pierre Bruno df828f0409 Enhance TTS functionality and improve voice management
- Refactored the TTS generation process to initialize the model globally and load voices dynamically, improving efficiency and usability.
- Introduced a new load_and_validate_voice function to ensure requested voices exist before loading, enhancing error handling.
- Updated generate_tts_with_logs to provide real-time logging during speech generation, including phoneme processing and audio saving.
- Improved audio conversion process with better error handling and temporary file management.
- Set default voice to 'af_bella' in the Gradio interface for improved user experience.
2025-01-16 17:03:54 +01:00

225 lines
8.0 KiB
Python

"""
Kokoro-TTS Local Generator
-------------------------
A Gradio interface for the Kokoro-TTS-Local text-to-speech system.
Supports multiple voices and audio formats, with cross-platform compatibility.
Key Features:
- Multiple voice models support
- Real-time generation with progress logging
- WAV, MP3, and AAC output formats
- Network sharing capabilities
- Cross-platform compatibility (Windows, macOS, Linux)
Dependencies:
- gradio: Web interface framework
- soundfile: Audio file handling
- pydub: Audio format conversion
- models: Custom module for voice model management
"""
import gradio as gr
import os
import sys
import platform
from datetime import datetime
import shutil
from pathlib import Path
import soundfile as sf
from pydub import AudioSegment
import torch
from models import (
list_available_voices, build_model, load_voice,
generate_speech, load_and_validate_voice
)
# Global configuration
CONFIG_FILE = "tts_config.json" # Stores user preferences and paths
DEFAULT_OUTPUT_DIR = "outputs" # Directory for generated audio files
SAMPLE_RATE = 22050
# Initialize model globally
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = None
def get_available_voices():
"""Get list of available voice models."""
try:
voices = list_available_voices()
print("Available voices:", voices)
return voices
except Exception as e:
print(f"Error retrieving voices: {e}")
return []
def convert_audio(input_path: str, output_path: str, format: str):
"""Convert audio to specified format using pydub."""
try:
audio = AudioSegment.from_wav(input_path)
if format == "mp3":
audio.export(output_path, format="mp3", bitrate="192k")
elif format == "aac":
audio.export(output_path, format="aac", bitrate="192k")
else: # wav
shutil.copy2(input_path, output_path)
return True
except Exception as e:
print(f"Error converting audio: {e}")
return False
def generate_tts_with_logs(voice_name, text, format):
"""Generate TTS audio with real-time logging and format conversion."""
global model
if not text.strip():
return "❌ Error: Text required", None
logs_text = ""
try:
# Initialize model if not done yet
if model is None:
logs_text += "Loading model...\n"
model = build_model("kokoro-v0_19.pth", device)
# Load voice
logs_text += f"Loading voice: {voice_name}\n"
yield logs_text, None
voice = load_and_validate_voice(voice_name, device)
# Generate speech
logs_text += f"Generating speech for: '{text}'\n"
yield logs_text, None
audio, phonemes = generate_speech(model, text, voice, lang='a', device=device)
if audio is not None and phonemes:
try:
logs_text += f"Generated phonemes: {phonemes}\n"
except UnicodeEncodeError:
logs_text += "Generated phonemes: [Unicode display error]\n"
# Save temporary WAV file
temp_wav = "output.wav"
sf.write(temp_wav, audio, SAMPLE_RATE)
# Convert to desired format
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"output_{timestamp}.{format}"
os.makedirs(DEFAULT_OUTPUT_DIR, exist_ok=True)
output_path = Path(DEFAULT_OUTPUT_DIR) / filename
if convert_audio(temp_wav, str(output_path), format):
logs_text += f"✅ Saved: {output_path}\n"
os.remove(temp_wav)
yield logs_text, str(output_path)
else:
logs_text += "❌ Audio conversion failed\n"
yield logs_text, None
else:
logs_text += "❌ Failed to generate audio\n"
yield logs_text, None
except Exception as e:
logs_text += f"❌ Error: {str(e)}\n"
yield logs_text, None
def create_interface(server_name="0.0.0.0", server_port=7860):
"""Create and configure Gradio interface with network sharing capabilities.
Creates a web interface with:
- Text input area
- Voice model selection
- Audio format selection (WAV/MP3/AAC)
- Real-time progress logging
- Audio playback and download
- Example inputs for testing
Args:
server_name (str): Server address for network sharing (default: "0.0.0.0" for all interfaces)
server_port (int): Port number to serve on (default: 7860)
Returns:
gr.Blocks: Configured Gradio interface ready for launching
"""
theme = gr.themes.Base(
primary_hue="zinc",
secondary_hue="slate",
neutral_hue="zinc",
font=gr.themes.GoogleFont("Inter")
)
with gr.Blocks(theme=theme) as demo:
gr.Markdown(
"""
<div style="text-align: center; margin-bottom: 2rem;">
<h1 style="font-size: 2.5em; margin-bottom: 0.5rem;">🎙️ Kokoro-TTS Local Generator</h1>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 2rem; background: rgba(0,0,0,0.05); padding: 1.5rem; border-radius: 8px; margin-top: 1rem;">
<div style="text-align: left;">
<h3>✨ Instructions</h3>
<p>1. Type or paste your text into the input box</p>
<p>2. Choose a voice from the dropdown menu</p>
<p>3. Click Generate and wait for processing</p>
<p>4. Play or download your generated audio</p>
</div>
<div style="text-align: left; border-left: 1px solid rgba(255,255,255,0.1); padding-left: 2rem;">
<h3>Introduction</h3>
<p>A local text-to-speech system using the Kokoro-82M model for natural-sounding voice synthesis.</p>
<p>Based on <a href="https://github.com/PierrunoYT/Kokoro-TTS-Local">Kokoro-TTS-Local</a> by <a href="https://github.com/PierrunoYT">PierrunoYT</a></p>
<p>Model: <a href="https://huggingface.co/hexgrad/Kokoro-82M">Kokoro-82M</a> by <a href="https://huggingface.co/hexgrad">hexgrad</a></p>
<p>Gradio Interface by ChatGPT, Claude & <a href="https://github.com/teslanaut">Teslanaut</a></p>
</div>
</div>
</div>
"""
)
text_input = gr.Textbox(
label="✍️ Text to Synthesize",
placeholder="Enter text here...",
lines=3
)
generate_button = gr.Button("🔊 Generate", variant="primary")
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
voice = gr.Dropdown(
choices=get_available_voices(),
label="🗣️ Select Voice",
value="af_bella"
)
format = gr.Radio(
choices=["wav", "mp3", "aac"],
label="🎵 Output Format",
value="wav"
)
with gr.Column(scale=2):
audio_output = gr.Audio(
label="🎧 Output",
type="filepath"
)
logs_output = gr.Textbox(
label="📋 Process Log",
lines=8,
interactive=False
)
generate_button.click(
fn=generate_tts_with_logs,
inputs=[voice, text_input, format],
outputs=[logs_output, audio_output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0", # Allow external connections
server_port=7860, # Default Gradio port
share=True, # Enable Gradio sharing link
show_error=True
)