diff --git a/reproduce/Step_0_index.py b/reproduce/Step_0_index.py index 2e98e27..97dae26 100644 --- a/reproduce/Step_0_index.py +++ b/reproduce/Step_0_index.py @@ -11,7 +11,7 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from minirag import MiniRAG from minirag.llm import ( gpt_4o_mini_complete, - hf_embedding, + hf_embed, ) from minirag.utils import EmbeddingFunc from transformers import AutoModel, AutoTokenizer @@ -69,7 +69,7 @@ rag = MiniRAG( embedding_func=EmbeddingFunc( embedding_dim=384, max_token_size=1000, - func=lambda texts: hf_embedding( + func=lambda texts: hf_embed( texts, tokenizer=AutoTokenizer.from_pretrained(EMBEDDING_MODEL), embed_model=AutoModel.from_pretrained(EMBEDDING_MODEL), diff --git a/reproduce/Step_1_QA.py b/reproduce/Step_1_QA.py index efe4622..3383bc4 100644 --- a/reproduce/Step_1_QA.py +++ b/reproduce/Step_1_QA.py @@ -13,7 +13,7 @@ from tqdm import trange from minirag import MiniRAG, QueryParam from minirag.llm import ( hf_model_complete, - hf_embedding, + hf_embed, ) from minirag.utils import EmbeddingFunc from transformers import AutoModel, AutoTokenizer @@ -71,7 +71,7 @@ rag = MiniRAG( embedding_func=EmbeddingFunc( embedding_dim=384, max_token_size=1000, - func=lambda texts: hf_embedding( + func=lambda texts: hf_embed( texts, tokenizer=AutoTokenizer.from_pretrained(EMBEDDING_MODEL), embed_model=AutoModel.from_pretrained(EMBEDDING_MODEL),