mirror of
https://github.com/microsoft/OmniParser.git
synced 2025-02-18 03:18:33 +03:00
353 lines
16 KiB
Python
353 lines
16 KiB
Python
import json
|
|
from collections.abc import Callable
|
|
from typing import cast, Callable
|
|
import uuid
|
|
from PIL import Image, ImageDraw
|
|
import base64
|
|
from io import BytesIO
|
|
|
|
from anthropic import APIResponse
|
|
from anthropic.types import ToolResultBlockParam
|
|
from anthropic.types.beta import BetaMessage, BetaTextBlock, BetaToolUseBlock, BetaMessageParam, BetaUsage
|
|
|
|
from agent.llm_utils.oaiclient import run_oai_interleaved
|
|
from agent.llm_utils.groqclient import run_groq_interleaved
|
|
from agent.llm_utils.utils import is_image_path
|
|
import time
|
|
import re
|
|
|
|
OUTPUT_DIR = "./tmp/outputs"
|
|
|
|
def extract_data(input_string, data_type):
|
|
# Regular expression to extract content starting from '```python' until the end if there are no closing backticks
|
|
pattern = f"```{data_type}" + r"(.*?)(```|$)"
|
|
# Extract content
|
|
# re.DOTALL allows '.' to match newlines as well
|
|
matches = re.findall(pattern, input_string, re.DOTALL)
|
|
# Return the first match if exists, trimming whitespace and ignoring potential closing backticks
|
|
return matches[0][0].strip() if matches else input_string
|
|
|
|
class VLMAgent:
|
|
def __init__(
|
|
self,
|
|
model: str,
|
|
provider: str,
|
|
api_key: str,
|
|
output_callback: Callable,
|
|
api_response_callback: Callable,
|
|
max_tokens: int = 4096,
|
|
only_n_most_recent_images: int | None = None,
|
|
print_usage: bool = True,
|
|
):
|
|
if model == "omniparser + gpt-4o":
|
|
self.model = "gpt-4o-2024-11-20"
|
|
elif model == "omniparser + R1":
|
|
self.model = "deepseek-r1-distill-llama-70b"
|
|
elif model == "omniparser + qwen2.5vl":
|
|
self.model = "qwen2.5-vl-72b-instruct"
|
|
elif model == "omniparser + o1":
|
|
self.model = "o1"
|
|
elif model == "omniparser + o3-mini":
|
|
self.model = "o3-mini"
|
|
else:
|
|
raise ValueError(f"Model {model} not supported")
|
|
|
|
|
|
self.provider = provider
|
|
self.api_key = api_key
|
|
self.api_response_callback = api_response_callback
|
|
self.max_tokens = max_tokens
|
|
self.only_n_most_recent_images = only_n_most_recent_images
|
|
self.output_callback = output_callback
|
|
|
|
self.print_usage = print_usage
|
|
self.total_token_usage = 0
|
|
self.total_cost = 0
|
|
self.step_count = 0
|
|
|
|
self.system = ''
|
|
|
|
def __call__(self, messages: list, parsed_screen: list[str, list, dict]):
|
|
self.step_count += 1
|
|
image_base64 = parsed_screen['original_screenshot_base64']
|
|
latency_omniparser = parsed_screen['latency']
|
|
self.output_callback(f'-- Step {self.step_count}: --', sender="bot")
|
|
screen_info = str(parsed_screen['screen_info'])
|
|
screenshot_uuid = parsed_screen['screenshot_uuid']
|
|
screen_width, screen_height = parsed_screen['width'], parsed_screen['height']
|
|
|
|
boxids_and_labels = parsed_screen["screen_info"]
|
|
system = self._get_system_prompt(boxids_and_labels)
|
|
|
|
# drop looping actions msg, byte image etc
|
|
planner_messages = messages
|
|
_remove_som_images(planner_messages)
|
|
_maybe_filter_to_n_most_recent_images(planner_messages, self.only_n_most_recent_images)
|
|
|
|
if isinstance(planner_messages[-1], dict):
|
|
if not isinstance(planner_messages[-1]["content"], list):
|
|
planner_messages[-1]["content"] = [planner_messages[-1]["content"]]
|
|
planner_messages[-1]["content"].append(f"{OUTPUT_DIR}/screenshot_{screenshot_uuid}.png")
|
|
planner_messages[-1]["content"].append(f"{OUTPUT_DIR}/screenshot_som_{screenshot_uuid}.png")
|
|
|
|
start = time.time()
|
|
if "gpt" in self.model or "o1" in self.model or "o3-mini" in self.model:
|
|
vlm_response, token_usage = run_oai_interleaved(
|
|
messages=planner_messages,
|
|
system=system,
|
|
model_name=self.model,
|
|
api_key=self.api_key,
|
|
max_tokens=self.max_tokens,
|
|
provider_base_url="https://api.openai.com/v1",
|
|
temperature=0,
|
|
)
|
|
print(f"oai token usage: {token_usage}")
|
|
self.total_token_usage += token_usage
|
|
if 'gpt' in self.model:
|
|
self.total_cost += (token_usage * 2.5 / 1000000) # https://openai.com/api/pricing/
|
|
elif 'o1' in self.model:
|
|
self.total_cost += (token_usage * 15 / 1000000) # https://openai.com/api/pricing/
|
|
elif 'o3-mini' in self.model:
|
|
self.total_cost += (token_usage * 1.1 / 1000000) # https://openai.com/api/pricing/
|
|
elif "r1" in self.model:
|
|
vlm_response, token_usage = run_groq_interleaved(
|
|
messages=planner_messages,
|
|
system=system,
|
|
model_name=self.model,
|
|
api_key=self.api_key,
|
|
max_tokens=self.max_tokens,
|
|
)
|
|
print(f"groq token usage: {token_usage}")
|
|
self.total_token_usage += token_usage
|
|
self.total_cost += (token_usage * 0.99 / 1000000)
|
|
elif "qwen" in self.model:
|
|
vlm_response, token_usage = run_oai_interleaved(
|
|
messages=planner_messages,
|
|
system=system,
|
|
model_name=self.model,
|
|
api_key=self.api_key,
|
|
max_tokens=min(2048, self.max_tokens),
|
|
provider_base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
|
|
temperature=0,
|
|
)
|
|
print(f"qwen token usage: {token_usage}")
|
|
self.total_token_usage += token_usage
|
|
self.total_cost += (token_usage * 2.2 / 1000000) # https://help.aliyun.com/zh/model-studio/getting-started/models?spm=a2c4g.11186623.0.0.74b04823CGnPv7#fe96cfb1a422a
|
|
else:
|
|
raise ValueError(f"Model {self.model} not supported")
|
|
latency_vlm = time.time() - start
|
|
self.output_callback(f"LLM: {latency_vlm:.2f}s, OmniParser: {latency_omniparser:.2f}s", sender="bot")
|
|
|
|
print(f"{vlm_response}")
|
|
|
|
if self.print_usage:
|
|
print(f"Total token so far: {self.total_token_usage}. Total cost so far: $USD{self.total_cost:.5f}")
|
|
|
|
vlm_response_json = extract_data(vlm_response, "json")
|
|
vlm_response_json = json.loads(vlm_response_json)
|
|
|
|
img_to_show_base64 = parsed_screen["som_image_base64"]
|
|
if "Box ID" in vlm_response_json:
|
|
try:
|
|
bbox = parsed_screen["parsed_content_list"][int(vlm_response_json["Box ID"])]["bbox"]
|
|
vlm_response_json["box_centroid_coordinate"] = [int((bbox[0] + bbox[2]) / 2 * screen_width), int((bbox[1] + bbox[3]) / 2 * screen_height)]
|
|
img_to_show_data = base64.b64decode(img_to_show_base64)
|
|
img_to_show = Image.open(BytesIO(img_to_show_data))
|
|
|
|
draw = ImageDraw.Draw(img_to_show)
|
|
x, y = vlm_response_json["box_centroid_coordinate"]
|
|
radius = 10
|
|
draw.ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
|
|
draw.ellipse((x - radius*3, y - radius*3, x + radius*3, y + radius*3), fill=None, outline='red', width=2)
|
|
|
|
buffered = BytesIO()
|
|
img_to_show.save(buffered, format="PNG")
|
|
img_to_show_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
except:
|
|
print(f"Error parsing: {vlm_response_json}")
|
|
pass
|
|
self.output_callback(f'<img src="data:image/png;base64,{img_to_show_base64}">', sender="bot")
|
|
self.output_callback(
|
|
f'<details>'
|
|
f' <summary>Parsed Screen elemetns by OmniParser</summary>'
|
|
f' <pre>{screen_info}</pre>'
|
|
f'</details>',
|
|
sender="bot"
|
|
)
|
|
vlm_plan_str = ""
|
|
for key, value in vlm_response_json.items():
|
|
if key == "Reasoning":
|
|
vlm_plan_str += f'{value}'
|
|
else:
|
|
vlm_plan_str += f'\n{key}: {value}'
|
|
|
|
# construct the response so that anthropicExcutor can execute the tool
|
|
response_content = [BetaTextBlock(text=vlm_plan_str, type='text')]
|
|
if 'box_centroid_coordinate' in vlm_response_json:
|
|
move_cursor_block = BetaToolUseBlock(id=f'toolu_{uuid.uuid4()}',
|
|
input={'action': 'mouse_move', 'coordinate': vlm_response_json["box_centroid_coordinate"]},
|
|
name='computer', type='tool_use')
|
|
response_content.append(move_cursor_block)
|
|
|
|
if vlm_response_json["Next Action"] == "None":
|
|
print("Task paused/completed.")
|
|
elif vlm_response_json["Next Action"] == "type":
|
|
sim_content_block = BetaToolUseBlock(id=f'toolu_{uuid.uuid4()}',
|
|
input={'action': vlm_response_json["Next Action"], 'text': vlm_response_json["value"]},
|
|
name='computer', type='tool_use')
|
|
response_content.append(sim_content_block)
|
|
else:
|
|
sim_content_block = BetaToolUseBlock(id=f'toolu_{uuid.uuid4()}',
|
|
input={'action': vlm_response_json["Next Action"]},
|
|
name='computer', type='tool_use')
|
|
response_content.append(sim_content_block)
|
|
response_message = BetaMessage(id=f'toolu_{uuid.uuid4()}', content=response_content, model='', role='assistant', type='message', stop_reason='tool_use', usage=BetaUsage(input_tokens=0, output_tokens=0))
|
|
return response_message, vlm_response_json
|
|
|
|
def _api_response_callback(self, response: APIResponse):
|
|
self.api_response_callback(response)
|
|
|
|
def _get_system_prompt(self, screen_info: str = ""):
|
|
main_section = f"""
|
|
You are using a Windows device.
|
|
You are able to use a mouse and keyboard to interact with the computer based on the given task and screenshot.
|
|
You can only interact with the desktop GUI (no terminal or application menu access).
|
|
|
|
You may be given some history plan and actions, this is the response from the previous loop.
|
|
You should carefully consider your plan base on the task, screenshot, and history actions.
|
|
|
|
Here is the list of all detected bounding boxes by IDs on the screen and their description:{screen_info}
|
|
|
|
Your available "Next Action" only include:
|
|
- type: types a string of text.
|
|
- left_click: move mouse to box id and left clicks.
|
|
- right_click: move mouse to box id and right clicks.
|
|
- double_click: move mouse to box id and double clicks.
|
|
- hover: move mouse to box id.
|
|
- scroll_up: scrolls the screen up to view previous content.
|
|
- scroll_down: scrolls the screen down, when the desired button is not visible, or you need to see more content.
|
|
- wait: waits for 1 second for the device to load or respond.
|
|
|
|
Based on the visual information from the screenshot image and the detected bounding boxes, please determine the next action, the Box ID you should operate on (if action is one of 'type', 'hover', 'scroll_up', 'scroll_down', 'wait', there should be no Box ID field), and the value (if the action is 'type') in order to complete the task.
|
|
|
|
Output format:
|
|
```json
|
|
{{
|
|
"Reasoning": str, # describe what is in the current screen, taking into account the history, then describe your step-by-step thoughts on how to achieve the task, choose one action from available actions at a time.
|
|
"Next Action": "action_type, action description" | "None" # one action at a time, describe it in short and precisely.
|
|
"Box ID": n,
|
|
"value": "xxx" # only provide value field if the action is type, else don't include value key
|
|
}}
|
|
```
|
|
|
|
One Example:
|
|
```json
|
|
{{
|
|
"Reasoning": "The current screen shows google result of amazon, in previous action I have searched amazon on google. Then I need to click on the first search results to go to amazon.com.",
|
|
"Next Action": "left_click",
|
|
"Box ID": m
|
|
}}
|
|
```
|
|
|
|
Another Example:
|
|
```json
|
|
{{
|
|
"Reasoning": "The current screen shows the front page of amazon. There is no previous action. Therefore I need to type "Apple watch" in the search bar.",
|
|
"Next Action": "type",
|
|
"Box ID": n,
|
|
"value": "Apple watch"
|
|
}}
|
|
```
|
|
|
|
Another Example:
|
|
```json
|
|
{{
|
|
"Reasoning": "The current screen does not show 'submit' button, I need to scroll down to see if the button is available.",
|
|
"Next Action": "scroll_down",
|
|
}}
|
|
```
|
|
|
|
IMPORTANT NOTES:
|
|
1. You should only give a single action at a time.
|
|
|
|
"""
|
|
thinking_model = "r1" in self.model
|
|
if not thinking_model:
|
|
main_section += """
|
|
2. You should give an analysis to the current screen, and reflect on what has been done by looking at the history, then describe your step-by-step thoughts on how to achieve the task.
|
|
|
|
"""
|
|
else:
|
|
main_section += """
|
|
2. In <think> XML tags give an analysis to the current screen, and reflect on what has been done by looking at the history, then describe your step-by-step thoughts on how to achieve the task. In <output> XML tags put the next action prediction JSON.
|
|
|
|
"""
|
|
main_section += """
|
|
3. Attach the next action prediction in the "Next Action".
|
|
4. You should not include other actions, such as keyboard shortcuts.
|
|
5. When the task is completed, don't complete additional actions. You should say "Next Action": "None" in the json field.
|
|
6. The tasks involve buying multiple products or navigating through multiple pages. You should break it into subgoals and complete each subgoal one by one in the order of the instructions.
|
|
7. avoid choosing the same action/elements multiple times in a row, if it happens, reflect to yourself, what may have gone wrong, and predict a different action.
|
|
8. If you are prompted with login information page or captcha page, or you think it need user's permission to do the next action, you should say "Next Action": "None" in the json field.
|
|
"""
|
|
|
|
return main_section
|
|
|
|
def _remove_som_images(messages):
|
|
for msg in messages:
|
|
msg_content = msg["content"]
|
|
if isinstance(msg_content, list):
|
|
msg["content"] = [
|
|
cnt for cnt in msg_content
|
|
if not (isinstance(cnt, str) and 'som' in cnt and is_image_path(cnt))
|
|
]
|
|
|
|
|
|
def _maybe_filter_to_n_most_recent_images(
|
|
messages: list[BetaMessageParam],
|
|
images_to_keep: int,
|
|
min_removal_threshold: int = 10,
|
|
):
|
|
"""
|
|
With the assumption that images are screenshots that are of diminishing value as
|
|
the conversation progresses, remove all but the final `images_to_keep` tool_result
|
|
images in place
|
|
"""
|
|
if images_to_keep is None:
|
|
return messages
|
|
|
|
total_images = 0
|
|
for msg in messages:
|
|
for cnt in msg.get("content", []):
|
|
if isinstance(cnt, str) and is_image_path(cnt):
|
|
total_images += 1
|
|
elif isinstance(cnt, dict) and cnt.get("type") == "tool_result":
|
|
for content in cnt.get("content", []):
|
|
if isinstance(content, dict) and content.get("type") == "image":
|
|
total_images += 1
|
|
|
|
images_to_remove = total_images - images_to_keep
|
|
|
|
for msg in messages:
|
|
msg_content = msg["content"]
|
|
if isinstance(msg_content, list):
|
|
new_content = []
|
|
for cnt in msg_content:
|
|
# Remove images from SOM or screenshot as needed
|
|
if isinstance(cnt, str) and is_image_path(cnt):
|
|
if images_to_remove > 0:
|
|
images_to_remove -= 1
|
|
continue
|
|
# VLM shouldn't use anthropic screenshot tool so shouldn't have these but in case it does, remove as needed
|
|
elif isinstance(cnt, dict) and cnt.get("type") == "tool_result":
|
|
new_tool_result_content = []
|
|
for tool_result_entry in cnt.get("content", []):
|
|
if isinstance(tool_result_entry, dict) and tool_result_entry.get("type") == "image":
|
|
if images_to_remove > 0:
|
|
images_to_remove -= 1
|
|
continue
|
|
new_tool_result_content.append(tool_result_entry)
|
|
cnt["content"] = new_tool_result_content
|
|
# Append fixed content to current message's content list
|
|
new_content.append(cnt)
|
|
msg["content"] = new_content |