mirror of
				https://github.com/All-Hands-AI/OpenHands.git
				synced 2024-08-29 01:18:33 +03:00 
			
		
		
		
	* Add runtime container image setting * Fix typo in test * Fix sandbox base container image * Update variables * Update to base_container_image * Update tests/unit/test_config.py Co-authored-by: Xingyao Wang <xingyao6@illinois.edu> * Fixed eval * Fixed container_image * Fix typo --------- Co-authored-by: Xingyao Wang <xingyao6@illinois.edu>
		
			
				
	
	
		
			321 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			321 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import asyncio
 | 
						|
import os
 | 
						|
import re
 | 
						|
import tempfile
 | 
						|
from typing import Any
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from datasets import load_dataset
 | 
						|
 | 
						|
from evaluation.agent_bench.helper import (
 | 
						|
    FAKE_RESPONSES,
 | 
						|
    INST_SUFFIXES,
 | 
						|
    compare_results,
 | 
						|
    create_sh_file,
 | 
						|
)
 | 
						|
from evaluation.utils.shared import (
 | 
						|
    EvalMetadata,
 | 
						|
    EvalOutput,
 | 
						|
    make_metadata,
 | 
						|
    prepare_dataset,
 | 
						|
    reset_logger_for_multiprocessing,
 | 
						|
    run_evaluation,
 | 
						|
)
 | 
						|
from openhands.controller.state.state import State
 | 
						|
from openhands.core.config import (
 | 
						|
    AppConfig,
 | 
						|
    SandboxConfig,
 | 
						|
    get_llm_config_arg,
 | 
						|
    parse_arguments,
 | 
						|
)
 | 
						|
from openhands.core.logger import openhands_logger as logger
 | 
						|
from openhands.core.main import create_runtime, run_controller
 | 
						|
from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction
 | 
						|
from openhands.events.observation import CmdOutputObservation
 | 
						|
from openhands.runtime.runtime import Runtime
 | 
						|
 | 
						|
 | 
						|
def get_config(
 | 
						|
    metadata: EvalMetadata,
 | 
						|
) -> AppConfig:
 | 
						|
    config = AppConfig(
 | 
						|
        default_agent=metadata.agent_class,
 | 
						|
        run_as_openhands=False,
 | 
						|
        runtime='eventstream',
 | 
						|
        max_iterations=metadata.max_iterations,
 | 
						|
        sandbox=SandboxConfig(
 | 
						|
            base_container_image='python:3.11-bookworm',
 | 
						|
            enable_auto_lint=True,
 | 
						|
            use_host_network=False,
 | 
						|
        ),
 | 
						|
        # do not mount workspace
 | 
						|
        workspace_base=None,
 | 
						|
        workspace_mount_path=None,
 | 
						|
    )
 | 
						|
    config.set_llm_config(metadata.llm_config)
 | 
						|
    return config
 | 
						|
 | 
						|
 | 
						|
async def initialize_runtime(
 | 
						|
    runtime: Runtime,
 | 
						|
    instance: pd.Series,  # this argument is not required
 | 
						|
):
 | 
						|
    """Initialize the runtime for the agent.
 | 
						|
 | 
						|
    This function is called before the runtime is used to run the agent.
 | 
						|
    """
 | 
						|
    logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
 | 
						|
    obs: CmdOutputObservation
 | 
						|
 | 
						|
    # Set instance id
 | 
						|
    action = CmdRunAction(command='mkdir -p /workspace')
 | 
						|
    logger.info(action, extra={'msg_type': 'ACTION'})
 | 
						|
    obs = await runtime.run_action(action)
 | 
						|
    assert obs.exit_code == 0
 | 
						|
 | 
						|
    action = CmdRunAction(command='cd /workspace')
 | 
						|
    logger.info(action, extra={'msg_type': 'ACTION'})
 | 
						|
    obs = await runtime.run_action(action)
 | 
						|
    assert obs.exit_code == 0
 | 
						|
 | 
						|
    init_cmd = instance.init
 | 
						|
    if init_cmd is not None:
 | 
						|
        script_name = f'{instance.instance_id}_init.sh'
 | 
						|
 | 
						|
        with tempfile.TemporaryDirectory() as tmpdir:
 | 
						|
            host_script_path = os.path.join(tmpdir, script_name)
 | 
						|
            create_sh_file(host_script_path, init_cmd)
 | 
						|
            await runtime.copy_to(
 | 
						|
                host_script_path,
 | 
						|
                '/workspace',
 | 
						|
            )
 | 
						|
 | 
						|
        logger.info(f'Running init script: {script_name}')
 | 
						|
        action = CmdRunAction(command=f'chmod +x ./{script_name} && ./{script_name}')
 | 
						|
        logger.info(action, extra={'msg_type': 'ACTION'})
 | 
						|
        obs = await runtime.run_action(action)
 | 
						|
        logger.info(obs, extra={'msg_type': 'OBSERVATION'})
 | 
						|
        assert obs.exit_code == 0
 | 
						|
 | 
						|
    logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
 | 
						|
 | 
						|
 | 
						|
async def complete_runtime(
 | 
						|
    runtime: Runtime,
 | 
						|
    instance: pd.Series,  # this argument is not required, but it is used to get the workspace_dir_name
 | 
						|
) -> dict[str, Any]:
 | 
						|
    """Complete the runtime for the agent.
 | 
						|
 | 
						|
    This function is called before the runtime is used to run the agent.
 | 
						|
    If you need to do something in the sandbox to get the correctness metric after
 | 
						|
    the agent has run, modify this function.
 | 
						|
    """
 | 
						|
    logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
 | 
						|
    obs: CmdOutputObservation
 | 
						|
 | 
						|
    agent_answer = None
 | 
						|
    get_agent_result_cmd = instance.get_agent_result
 | 
						|
    if get_agent_result_cmd is not None:
 | 
						|
        script_name = 'get_agent_result.sh'
 | 
						|
 | 
						|
        with tempfile.TemporaryDirectory() as tmpdir:
 | 
						|
            host_script_path = os.path.join(tmpdir, script_name)
 | 
						|
            create_sh_file(host_script_path, get_agent_result_cmd)
 | 
						|
            await runtime.copy_to(
 | 
						|
                host_script_path,
 | 
						|
                '/workspace',
 | 
						|
            )
 | 
						|
            logger.info(f'Running get agent result cmd: {script_name}')
 | 
						|
 | 
						|
        action = CmdRunAction(
 | 
						|
            command=f'chmod +x ./{script_name} && ./{script_name}',
 | 
						|
            keep_prompt=False,
 | 
						|
        )
 | 
						|
        logger.info(action, extra={'msg_type': 'ACTION'})
 | 
						|
        obs = await runtime.run_action(action)
 | 
						|
        logger.info(obs, extra={'msg_type': 'OBSERVATION'})
 | 
						|
        assert obs.exit_code == 0
 | 
						|
        agent_answer = obs.content
 | 
						|
    # IF the agent answer is not found, retrieve it from the history
 | 
						|
    # We wait until the controller finishes
 | 
						|
 | 
						|
    final_ans = None
 | 
						|
    if instance.ground_truth is not None:
 | 
						|
        final_ans = instance.ground_truth
 | 
						|
    else:
 | 
						|
        get_ground_truth_cmd = instance.get_ground_truth
 | 
						|
        if get_ground_truth_cmd is not None:
 | 
						|
            script_name = 'get_ground_truth.sh'
 | 
						|
            with tempfile.TemporaryDirectory() as tmpdir:
 | 
						|
                host_script_path = os.path.join(tmpdir, script_name)
 | 
						|
                create_sh_file(host_script_path, get_ground_truth_cmd)
 | 
						|
                await runtime.copy_to(
 | 
						|
                    host_script_path,
 | 
						|
                    '/workspace',
 | 
						|
                )
 | 
						|
            logger.info(f'Running get ground truth cmd: {script_name}')
 | 
						|
 | 
						|
            action = CmdRunAction(
 | 
						|
                command=f'chmod +x ./{script_name} && ./{script_name}',
 | 
						|
                keep_prompt=False,
 | 
						|
            )
 | 
						|
            logger.info(action, extra={'msg_type': 'ACTION'})
 | 
						|
            obs = await runtime.run_action(action)
 | 
						|
            logger.info(obs, extra={'msg_type': 'OBSERVATION'})
 | 
						|
            final_ans = obs.content
 | 
						|
 | 
						|
    logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
 | 
						|
    return {
 | 
						|
        'final_ans': final_ans,
 | 
						|
        'agent_answer': agent_answer,
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
async def process_instance(
 | 
						|
    instance: pd.Series,
 | 
						|
    metadata: EvalMetadata,
 | 
						|
    reset_logger: bool = True,
 | 
						|
) -> EvalOutput:
 | 
						|
    config = get_config(metadata)
 | 
						|
 | 
						|
    # Setup the logger properly, so you can run multi-processing to parallelize the evaluation
 | 
						|
    if reset_logger:
 | 
						|
        log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
 | 
						|
        reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
 | 
						|
    else:
 | 
						|
        logger.info(f'Starting evaluation for instance {instance.instance_id}.')
 | 
						|
 | 
						|
    # =============================================
 | 
						|
    # build instruction
 | 
						|
    # =============================================
 | 
						|
 | 
						|
    # Prepare instruction
 | 
						|
    instruction = (
 | 
						|
        f'Please fix the following issue.\n'
 | 
						|
        'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
 | 
						|
        'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
 | 
						|
        'For example: The answer to the question is <solution> 42 </solution>.\n'
 | 
						|
        '# Problem \n'
 | 
						|
        f'{instance.description}\n\n'
 | 
						|
    )
 | 
						|
    instruction += (
 | 
						|
        'IMPORTANT: You should ONLY interact with the environment provided '
 | 
						|
        'to you AND NEVER ASK FOR HUMAN HELP.\n'
 | 
						|
    )
 | 
						|
    # NOTE: You can actually set slightly different instruction for different agents
 | 
						|
    instruction += INST_SUFFIXES[metadata.agent_class]
 | 
						|
 | 
						|
    # =============================================
 | 
						|
    # create sandbox and run the agent
 | 
						|
    # =============================================
 | 
						|
 | 
						|
    runtime: Runtime = await create_runtime(config, sid=instance.instance_id)
 | 
						|
 | 
						|
    await initialize_runtime(runtime, instance=instance)
 | 
						|
 | 
						|
    # Here's how you can run the agent (similar to the `main` function) and get the final task state
 | 
						|
    state: State | None = await run_controller(
 | 
						|
        config=config,
 | 
						|
        task_str=instruction,
 | 
						|
        runtime=runtime,
 | 
						|
        fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class],
 | 
						|
    )
 | 
						|
    if state is None:
 | 
						|
        raise ValueError('State should not be None.')
 | 
						|
 | 
						|
    # =============================================
 | 
						|
    # result evaluation
 | 
						|
    # =============================================
 | 
						|
 | 
						|
    return_val = await complete_runtime(runtime, instance)
 | 
						|
    agent_answer = return_val['agent_answer']
 | 
						|
    final_ans = return_val['final_ans']
 | 
						|
 | 
						|
    # If the agent answer is not found, retrieve it from the history
 | 
						|
    if agent_answer is None:
 | 
						|
        agent_answer = ''
 | 
						|
        logger.info('Retrieving agent answer from history.')
 | 
						|
        raw_ans = ''
 | 
						|
 | 
						|
        # retrieve the last agent message or thought
 | 
						|
        for event in state.history.get_events(reverse=True):
 | 
						|
            if event.source == 'agent':
 | 
						|
                if isinstance(event, AgentFinishAction):
 | 
						|
                    raw_ans = event.thought
 | 
						|
                    break
 | 
						|
                elif isinstance(event, MessageAction):
 | 
						|
                    raw_ans = event.content
 | 
						|
                    break
 | 
						|
                elif isinstance(event, CmdRunAction):
 | 
						|
                    raw_ans = event.thought
 | 
						|
                    break
 | 
						|
 | 
						|
        # parse the answer for a solution tag
 | 
						|
        agent_answer = re.findall(r'<solution>(.*?)</solution>', raw_ans, re.DOTALL)
 | 
						|
        if len(agent_answer) == 0:
 | 
						|
            logger.warning(f'Failed to parse model answer: {raw_ans}')
 | 
						|
            agent_answer = raw_ans
 | 
						|
        else:
 | 
						|
            agent_answer = agent_answer[0]
 | 
						|
 | 
						|
    comparison_method = instance.comparison_method
 | 
						|
    logger.info(
 | 
						|
        f'Final message: {agent_answer} | Ground truth: {final_ans} | Comparison method: {comparison_method}'
 | 
						|
    )
 | 
						|
    test_result = compare_results(comparison_method, agent_answer, final_ans)
 | 
						|
 | 
						|
    # history is now available as a stream of events, rather than list of pairs of (Action, Observation)
 | 
						|
    # for compatibility with the existing output format, we can remake the pairs here
 | 
						|
    # remove when it becomes unnecessary
 | 
						|
    histories = state.history.compatibility_for_eval_history_pairs()
 | 
						|
 | 
						|
    metrics = state.metrics.get() if state.metrics else None
 | 
						|
 | 
						|
    # Save the output
 | 
						|
    output = EvalOutput(
 | 
						|
        instance_id=instance.instance_id,
 | 
						|
        instance=instance.to_dict(),
 | 
						|
        instruction=instruction,
 | 
						|
        metadata=metadata,
 | 
						|
        history=histories,
 | 
						|
        metrics=metrics,
 | 
						|
        error=state.last_error if state and state.last_error else None,
 | 
						|
        test_result={
 | 
						|
            'agent_answer': agent_answer,
 | 
						|
            'final_answer': final_ans,
 | 
						|
            'check_method': comparison_method,
 | 
						|
            'result': test_result,
 | 
						|
        },
 | 
						|
    )
 | 
						|
    return output
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    args = parse_arguments()
 | 
						|
    dataset = load_dataset('iFurySt/AgentBench')
 | 
						|
    agent_bench_tests = dataset['osbench'].to_pandas()
 | 
						|
 | 
						|
    llm_config = None
 | 
						|
    if args.llm_config:
 | 
						|
        llm_config = get_llm_config_arg(args.llm_config)
 | 
						|
 | 
						|
    if llm_config is None:
 | 
						|
        raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
 | 
						|
 | 
						|
    metadata = make_metadata(
 | 
						|
        llm_config,
 | 
						|
        'AgentBench-OS',
 | 
						|
        args.agent_cls,
 | 
						|
        args.max_iterations,
 | 
						|
        args.eval_note,
 | 
						|
        args.eval_output_dir,
 | 
						|
    )
 | 
						|
    output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
 | 
						|
    instances = prepare_dataset(agent_bench_tests, output_file, args.eval_n_limit)
 | 
						|
 | 
						|
    asyncio.run(
 | 
						|
        run_evaluation(
 | 
						|
            instances, metadata, output_file, args.eval_num_workers, process_instance
 | 
						|
        )
 | 
						|
    )
 |