Files
OpenHands-swe-agent/evaluation/gorilla/run_infer.py
Xingyao Wang bdf6df12c3 fix: pip not available in runtime (#3306)
* try to fix pip unavailable

* update test case for pip

* force rebuild in CI

* remove extra symlink

* fix newline

* added semi-colon to line 31

* Dockerfile.j2: activate env at the end

* Revert "Dockerfile.j2: activate env at the end"

This reverts commit cf2f565102.

* cleanup Dockerfile

* switch default python image

* remove image agnostic (no longer used)

* fix tests

* switch to nikolaik/python-nodejs:python3.11-nodejs22

* fix test

* fix test

* revert docker

* update template

---------

Co-authored-by: tobitege <tobitege@gmx.de>
Co-authored-by: Graham Neubig <neubig@gmail.com>
2024-08-09 15:04:43 -04:00

196 lines
6.6 KiB
Python

import asyncio
import json
import os
import pandas as pd
from evaluation.gorilla.utils import encode_question, get_data_for_hub
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from opendevin.controller.state.state import State
from opendevin.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from opendevin.core.logger import opendevin_logger as logger
from opendevin.core.main import create_runtime, run_controller
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have completed the request, please run the following command: <execute_bash> exit </execute_bash>.\n'
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_devin=False,
runtime='eventstream',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
container_image='python:3.11-bookworm',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
return config
async def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata)
instance_id = instance['question_id']
question = instance['question']
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance_id}.')
# Prepare instruction
instruction = encode_question(question, instance['hub'])
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
# logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
# Here's how you can run the agent (similar to the `main` function) and get the final task state
runtime = await create_runtime(config, sid=instance_id)
state: State | None = await run_controller(
config=config,
task_str=instruction,
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# retrieve the last message from the agent
model_answer_raw = state.history.get_last_agent_message()
# attempt to parse model_answer
ast_eval_fn = instance['ast_eval']
correct, hallucination = ast_eval_fn(instance_id, model_answer_raw)
metrics = state.metrics.get() if state.metrics else None
logger.info(
f'Final message: {model_answer_raw} | Correctness: {correct} | Hallucination: {hallucination}'
)
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
output = EvalOutput(
instance_id=instance_id,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'text': model_answer_raw,
'correct': correct,
'hallucination': hallucination,
},
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--hubs',
type=str,
help='Which hubs to evaluate from APIBench. APIBench contains 3 hubs, namely huggingface, torch, and tensorflow. You could choose one or more from hf, torch, or tf, separated by commas. For example, the default is --hub hf,torch,tf.',
default='hf,torch,tf',
)
args, _ = parser.parse_known_args()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
hubs = args.hubs.split(',')
if len(hubs) == 0:
raise ValueError('Please choose at least one from hf, torch, and tf for hubs.')
dfs = []
for hub in hubs:
logger.info(f'Evaluating APIBench {hub} test')
df = get_data_for_hub(hub)
dfs.append(df)
dataset_df = pd.concat(dfs)
dataset_df.rename(columns={'question_id': 'instance_id'}, inplace=True)
metadata = make_metadata(
llm_config=llm_config,
dataset_name=f'gorilla-{hub}',
agent_class=args.agent_cls,
max_iterations=args.max_iterations,
eval_note=args.eval_note,
eval_output_dir=args.eval_output_dir,
data_split=args.data_split,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
dataset = prepare_dataset(
dataset_df, output_file=output_file, eval_n_limit=args.eval_n_limit
)
asyncio.run(
run_evaluation(
dataset=dataset,
metadata=metadata,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance,
)
)
# Read the output file and calculate the accuracy
total_correct = 0
total_hallucination = 0
output = []
with open(output_file, 'r') as f:
for line in f:
data = json.loads(line)
if data['test_result']['correct']:
total_correct += 1
if data['test_result']['hallucination']:
total_hallucination += 1
output.append(data)
logger.info(
f'Evaluation finished for {hub}. Total: {len(output)}; Correct: {total_correct}; Hallucination: {total_hallucination}. Accuracy: {total_correct / len(output)}'
)