mirror of
https://github.com/All-Hands-AI/OpenHands.git
synced 2024-08-29 01:18:33 +03:00
* try to fix pip unavailable
* update test case for pip
* force rebuild in CI
* remove extra symlink
* fix newline
* added semi-colon to line 31
* Dockerfile.j2: activate env at the end
* Revert "Dockerfile.j2: activate env at the end"
This reverts commit cf2f565102.
* cleanup Dockerfile
* switch default python image
* remove image agnostic (no longer used)
* fix tests
* switch to nikolaik/python-nodejs:python3.11-nodejs22
* fix test
* fix test
* revert docker
* update template
---------
Co-authored-by: tobitege <tobitege@gmx.de>
Co-authored-by: Graham Neubig <neubig@gmail.com>
196 lines
6.6 KiB
Python
196 lines
6.6 KiB
Python
import asyncio
|
|
import json
|
|
import os
|
|
|
|
import pandas as pd
|
|
|
|
from evaluation.gorilla.utils import encode_question, get_data_for_hub
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from opendevin.controller.state.state import State
|
|
from opendevin.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
get_parser,
|
|
)
|
|
from opendevin.core.logger import opendevin_logger as logger
|
|
from opendevin.core.main import create_runtime, run_controller
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have completed the request, please run the following command: <execute_bash> exit </execute_bash>.\n'
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_devin=False,
|
|
runtime='eventstream',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
container_image='python:3.11-bookworm',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
),
|
|
# do not mount workspace
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
return config
|
|
|
|
|
|
async def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
instance_id = instance['question_id']
|
|
question = instance['question']
|
|
|
|
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance_id}.')
|
|
|
|
# Prepare instruction
|
|
instruction = encode_question(question, instance['hub'])
|
|
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
# NOTE: You can actually set slightly different instruction for different agents
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
|
|
# logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
|
|
|
|
# Here's how you can run the agent (similar to the `main` function) and get the final task state
|
|
runtime = await create_runtime(config, sid=instance_id)
|
|
state: State | None = await run_controller(
|
|
config=config,
|
|
task_str=instruction,
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
|
|
metadata.agent_class
|
|
),
|
|
)
|
|
# ======= Attempt to evaluate the agent's edits =======
|
|
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
|
|
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
# retrieve the last message from the agent
|
|
model_answer_raw = state.history.get_last_agent_message()
|
|
|
|
# attempt to parse model_answer
|
|
ast_eval_fn = instance['ast_eval']
|
|
correct, hallucination = ast_eval_fn(instance_id, model_answer_raw)
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
logger.info(
|
|
f'Final message: {model_answer_raw} | Correctness: {correct} | Hallucination: {hallucination}'
|
|
)
|
|
|
|
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
|
|
# for compatibility with the existing output format, we can remake the pairs here
|
|
# remove when it becomes unnecessary
|
|
histories = state.history.compatibility_for_eval_history_pairs()
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance_id,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result={
|
|
'text': model_answer_raw,
|
|
'correct': correct,
|
|
'hallucination': hallucination,
|
|
},
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
parser.add_argument(
|
|
'--hubs',
|
|
type=str,
|
|
help='Which hubs to evaluate from APIBench. APIBench contains 3 hubs, namely huggingface, torch, and tensorflow. You could choose one or more from hf, torch, or tf, separated by commas. For example, the default is --hub hf,torch,tf.',
|
|
default='hf,torch,tf',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
hubs = args.hubs.split(',')
|
|
if len(hubs) == 0:
|
|
raise ValueError('Please choose at least one from hf, torch, and tf for hubs.')
|
|
|
|
dfs = []
|
|
for hub in hubs:
|
|
logger.info(f'Evaluating APIBench {hub} test')
|
|
df = get_data_for_hub(hub)
|
|
dfs.append(df)
|
|
dataset_df = pd.concat(dfs)
|
|
dataset_df.rename(columns={'question_id': 'instance_id'}, inplace=True)
|
|
|
|
metadata = make_metadata(
|
|
llm_config=llm_config,
|
|
dataset_name=f'gorilla-{hub}',
|
|
agent_class=args.agent_cls,
|
|
max_iterations=args.max_iterations,
|
|
eval_note=args.eval_note,
|
|
eval_output_dir=args.eval_output_dir,
|
|
data_split=args.data_split,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
|
|
dataset = prepare_dataset(
|
|
dataset_df, output_file=output_file, eval_n_limit=args.eval_n_limit
|
|
)
|
|
|
|
asyncio.run(
|
|
run_evaluation(
|
|
dataset=dataset,
|
|
metadata=metadata,
|
|
output_file=output_file,
|
|
num_workers=args.eval_num_workers,
|
|
process_instance_func=process_instance,
|
|
)
|
|
)
|
|
|
|
# Read the output file and calculate the accuracy
|
|
total_correct = 0
|
|
total_hallucination = 0
|
|
output = []
|
|
with open(output_file, 'r') as f:
|
|
for line in f:
|
|
data = json.loads(line)
|
|
if data['test_result']['correct']:
|
|
total_correct += 1
|
|
if data['test_result']['hallucination']:
|
|
total_hallucination += 1
|
|
output.append(data)
|
|
logger.info(
|
|
f'Evaluation finished for {hub}. Total: {len(output)}; Correct: {total_correct}; Hallucination: {total_hallucination}. Accuracy: {total_correct / len(output)}'
|
|
)
|