Files
OpenHands-swe-agent/evaluation/toolqa/run_infer.py
Xingyao Wang bdf6df12c3 fix: pip not available in runtime (#3306)
* try to fix pip unavailable

* update test case for pip

* force rebuild in CI

* remove extra symlink

* fix newline

* added semi-colon to line 31

* Dockerfile.j2: activate env at the end

* Revert "Dockerfile.j2: activate env at the end"

This reverts commit cf2f565102.

* cleanup Dockerfile

* switch default python image

* remove image agnostic (no longer used)

* fix tests

* switch to nikolaik/python-nodejs:python3.11-nodejs22

* fix test

* fix test

* revert docker

* update template

---------

Co-authored-by: tobitege <tobitege@gmx.de>
Co-authored-by: Graham Neubig <neubig@gmail.com>
2024-08-09 15:04:43 -04:00

218 lines
7.2 KiB
Python

import asyncio
import os
from typing import Any
import pandas as pd
from evaluation.toolqa.utils import encode_question, eval_answer, get_data
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from opendevin.controller.state.state import State
from opendevin.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from opendevin.core.logger import opendevin_logger as logger
from opendevin.core.main import create_runtime, run_controller
from opendevin.events.action import CmdRunAction
from opendevin.events.observation import CmdOutputObservation
from opendevin.runtime.runtime import Runtime
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have completed the request, please run the following command: <execute_bash> exit </execute_bash>.\n'
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_devin=False,
runtime='eventstream',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
container_image='python:3.11-bookworm',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
return config
async def initialize_runtime(runtime: Runtime):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
await runtime.add_env_vars({'WOLFRAM_ALPHA_APPID': args.wolfram_alpha_appid})
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
async def process_instance(
instance: Any, metadata: EvalMetadata, reset_logger: bool = True
):
config = get_config(metadata)
qid = instance.qid
question = instance.question
answer = instance.answer
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, qid, log_dir)
else:
logger.info(f'Starting evaluation for instance {qid}.')
# Prepare instruction
instruction = encode_question(question)
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
runtime = await create_runtime(config, sid=qid)
await initialize_runtime(runtime)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = await run_controller(
config=config,
task_str=instruction,
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# retrieve the last message from the agent
model_answer_raw = state.history.get_last_agent_message()
# attempt to parse model_answer
correct = eval_answer(str(model_answer_raw), str(answer))
logger.info(f'Final message: {model_answer_raw} | Correctness: {correct}')
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
# Save the output
output = EvalOutput(
instance_id=qid,
test_result={
'model_answer_raw': model_answer_raw,
'correct': correct,
},
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--dataset',
type=str,
help='Which dataset to evaluate from ToolQA. ToolQA contains 8 datasets, namely agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp. For example, the default is --dataset flight.',
default='flight',
)
parser.add_argument(
'--hardness',
type=str,
help='Which level of difficulty to evaluate from ToolQA. ToolQA contains 2 levels of hardness, namely easy and hard. For example, the default is --hardness easy.',
default='easy',
)
parser.add_argument(
'--wolfram_alpha_appid',
type=str,
help='wolfram alpha appid to use for wolfram alpha related tests',
default='YOUR_WOLFRAMALPHA_APPID',
)
args, _ = parser.parse_known_args()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
dataset = ''
hardness = ''
dataset_choices = [
'agenda',
'airbnb',
'coffee',
'dblp',
'flight',
'gsm8k',
'scirex',
'yelp',
'genda',
]
if args.dataset not in dataset_choices:
raise ValueError(
'Please choose from agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp for dataset.'
)
if args.hardness not in ['easy', 'hard']:
raise ValueError('Please choose from easy and hard for hardness.')
toolqa_test = pd.DataFrame(get_data(dataset, hardness))
toolqa_test.rename(columns={'qid': 'instance_id'}, inplace=True)
metadata = make_metadata(
llm_config,
f'toolqa-{args.dataset}-{args.hardness}',
args.agent_cls,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(toolqa_test, output_file, args.eval_n_limit)
asyncio.run(
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)
)