mirror of
https://github.com/All-Hands-AI/OpenHands.git
synced 2024-08-29 01:18:33 +03:00
* try to fix pip unavailable
* update test case for pip
* force rebuild in CI
* remove extra symlink
* fix newline
* added semi-colon to line 31
* Dockerfile.j2: activate env at the end
* Revert "Dockerfile.j2: activate env at the end"
This reverts commit cf2f565102.
* cleanup Dockerfile
* switch default python image
* remove image agnostic (no longer used)
* fix tests
* switch to nikolaik/python-nodejs:python3.11-nodejs22
* fix test
* fix test
* revert docker
* update template
---------
Co-authored-by: tobitege <tobitege@gmx.de>
Co-authored-by: Graham Neubig <neubig@gmail.com>
218 lines
7.2 KiB
Python
218 lines
7.2 KiB
Python
import asyncio
|
|
import os
|
|
from typing import Any
|
|
|
|
import pandas as pd
|
|
|
|
from evaluation.toolqa.utils import encode_question, eval_answer, get_data
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from opendevin.controller.state.state import State
|
|
from opendevin.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
get_parser,
|
|
)
|
|
from opendevin.core.logger import opendevin_logger as logger
|
|
from opendevin.core.main import create_runtime, run_controller
|
|
from opendevin.events.action import CmdRunAction
|
|
from opendevin.events.observation import CmdOutputObservation
|
|
from opendevin.runtime.runtime import Runtime
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have completed the request, please run the following command: <execute_bash> exit </execute_bash>.\n'
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_devin=False,
|
|
runtime='eventstream',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
container_image='python:3.11-bookworm',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
),
|
|
# do not mount workspace
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
return config
|
|
|
|
|
|
async def initialize_runtime(runtime: Runtime):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
# Set instance id
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='cd /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
await runtime.add_env_vars({'WOLFRAM_ALPHA_APPID': args.wolfram_alpha_appid})
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
|
|
|
|
async def process_instance(
|
|
instance: Any, metadata: EvalMetadata, reset_logger: bool = True
|
|
):
|
|
config = get_config(metadata)
|
|
|
|
qid = instance.qid
|
|
question = instance.question
|
|
answer = instance.answer
|
|
|
|
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, qid, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {qid}.')
|
|
|
|
# Prepare instruction
|
|
instruction = encode_question(question)
|
|
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
# NOTE: You can actually set slightly different instruction for different agents
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
|
|
logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
|
|
|
|
runtime = await create_runtime(config, sid=qid)
|
|
await initialize_runtime(runtime)
|
|
|
|
# Here's how you can run the agent (similar to the `main` function) and get the final task state
|
|
state: State | None = await run_controller(
|
|
config=config,
|
|
task_str=instruction,
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
|
|
)
|
|
# ======= Attempt to evaluate the agent's edits =======
|
|
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
|
|
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
# retrieve the last message from the agent
|
|
model_answer_raw = state.history.get_last_agent_message()
|
|
|
|
# attempt to parse model_answer
|
|
correct = eval_answer(str(model_answer_raw), str(answer))
|
|
logger.info(f'Final message: {model_answer_raw} | Correctness: {correct}')
|
|
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
|
|
# for compatibility with the existing output format, we can remake the pairs here
|
|
# remove when it becomes unnecessary
|
|
histories = state.history.compatibility_for_eval_history_pairs()
|
|
|
|
# Save the output
|
|
output = EvalOutput(
|
|
instance_id=qid,
|
|
test_result={
|
|
'model_answer_raw': model_answer_raw,
|
|
'correct': correct,
|
|
},
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
parser.add_argument(
|
|
'--dataset',
|
|
type=str,
|
|
help='Which dataset to evaluate from ToolQA. ToolQA contains 8 datasets, namely agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp. For example, the default is --dataset flight.',
|
|
default='flight',
|
|
)
|
|
parser.add_argument(
|
|
'--hardness',
|
|
type=str,
|
|
help='Which level of difficulty to evaluate from ToolQA. ToolQA contains 2 levels of hardness, namely easy and hard. For example, the default is --hardness easy.',
|
|
default='easy',
|
|
)
|
|
parser.add_argument(
|
|
'--wolfram_alpha_appid',
|
|
type=str,
|
|
help='wolfram alpha appid to use for wolfram alpha related tests',
|
|
default='YOUR_WOLFRAMALPHA_APPID',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
dataset = ''
|
|
hardness = ''
|
|
dataset_choices = [
|
|
'agenda',
|
|
'airbnb',
|
|
'coffee',
|
|
'dblp',
|
|
'flight',
|
|
'gsm8k',
|
|
'scirex',
|
|
'yelp',
|
|
'genda',
|
|
]
|
|
if args.dataset not in dataset_choices:
|
|
raise ValueError(
|
|
'Please choose from agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp for dataset.'
|
|
)
|
|
if args.hardness not in ['easy', 'hard']:
|
|
raise ValueError('Please choose from easy and hard for hardness.')
|
|
|
|
toolqa_test = pd.DataFrame(get_data(dataset, hardness))
|
|
toolqa_test.rename(columns={'qid': 'instance_id'}, inplace=True)
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
f'toolqa-{args.dataset}-{args.hardness}',
|
|
args.agent_cls,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(toolqa_test, output_file, args.eval_n_limit)
|
|
asyncio.run(
|
|
run_evaluation(
|
|
instances, metadata, output_file, args.eval_num_workers, process_instance
|
|
)
|
|
)
|