Add scenario editing modal, twitter sentiment seeding (#101)

* testing agi-eval benchmark

* Add scenario modal editor

* Add initial values to ScenarioEditorModal

* Add seedTwitterSentiment.ts

---------

Co-authored-by: Kyle Corbitt <kyle@corbt.com>
This commit is contained in:
arcticfly
2023-08-01 01:26:43 -07:00
committed by GitHub
parent 6316eaae6d
commit 1fb428ef4a
11 changed files with 621 additions and 102 deletions

View File

@@ -0,0 +1,113 @@
import { prisma } from "~/server/db";
import dedent from "dedent";
import fs from "fs";
import { parse } from "csv-parse/sync";
const defaultId = "11111111-1111-1111-1111-111111111112";
await prisma.organization.deleteMany({
where: { id: defaultId },
});
// If there's an existing org, just seed into it
const org =
(await prisma.organization.findFirst({})) ??
(await prisma.organization.create({
data: { id: defaultId },
}));
type Scenario = {
text: string;
sentiment: string;
emotion: string;
};
const experimentName = `Twitter Sentiment Analysis`;
const oldExperiment = await prisma.experiment.findFirst({
where: {
label: experimentName,
organizationId: org.id,
},
});
if (oldExperiment) {
await prisma.experiment.deleteMany({
where: { id: oldExperiment.id },
});
}
const experiment = await prisma.experiment.create({
data: {
id: oldExperiment?.id ?? undefined,
label: experimentName,
organizationId: org.id,
},
});
const content = fs.readFileSync("./prisma/datasets/validated_tweets.csv", "utf8");
// eslint-disable-next-line @typescript-eslint/no-explicit-any
const records: any[] = parse(content, { delimiter: ",", from_line: 2 });
console.log("records", records);
const scenarios: Scenario[] = records.map((row) => ({
text: row[0],
sentiment: row[1],
emotion: row[2],
}));
console.log("scenarios", scenarios.length);
await prisma.testScenario.createMany({
data: scenarios.slice(0, 30).map((scenario, i) => ({
experimentId: experiment.id,
sortIndex: i,
variableValues: {
text: scenario.text,
sentiment: scenario.sentiment,
emotion: scenario.emotion,
},
})),
});
await prisma.templateVariable.createMany({
data: ["text", "sentiment", "emotion"].map((label) => ({
experimentId: experiment.id,
label,
})),
});
await prisma.promptVariant.createMany({
data: [
{
experimentId: experiment.id,
label: "Prompt Variant 1",
sortIndex: 0,
model: "gpt-3.5-turbo-0613",
modelProvider: "openai/ChatCompletion",
constructFnVersion: 1,
constructFn: dedent`
definePrompt("openai/ChatCompletion", {
model: "gpt-3.5-turbo-0613",
messages: [
{
role: "user",
content: \`Text: ${"$"}{scenario.text}\n\nRespond with the sentiment (negative|neutral|positive) and emotion (optimism|joy|anger|sadness) of the tweet in this format: "answer: <sentiment>-<emotion>".\`
}
],
temperature: 0,
})`,
},
],
});
await prisma.evaluation.createMany({
data: [
{
experimentId: experiment.id,
label: "Eval",
evalType: "CONTAINS",
value: "answer: {{sentiment}}-{{emotion}}",
},
],
});