More work on modelProviders
I think everything that's OpenAI-specific is inside modelProviders at this point, so we can get started adding more providers.
This commit is contained in:
@@ -6,11 +6,11 @@ import SyntaxHighlighter from "react-syntax-highlighter";
|
|||||||
import { docco } from "react-syntax-highlighter/dist/cjs/styles/hljs";
|
import { docco } from "react-syntax-highlighter/dist/cjs/styles/hljs";
|
||||||
import stringify from "json-stringify-pretty-compact";
|
import stringify from "json-stringify-pretty-compact";
|
||||||
import { type ReactElement, useState, useEffect } from "react";
|
import { type ReactElement, useState, useEffect } from "react";
|
||||||
import { type ChatCompletion } from "openai/resources/chat";
|
|
||||||
import useSocket from "~/utils/useSocket";
|
import useSocket from "~/utils/useSocket";
|
||||||
import { OutputStats } from "./OutputStats";
|
import { OutputStats } from "./OutputStats";
|
||||||
import { ErrorHandler } from "./ErrorHandler";
|
import { ErrorHandler } from "./ErrorHandler";
|
||||||
import { CellOptions } from "./CellOptions";
|
import { CellOptions } from "./CellOptions";
|
||||||
|
import modelProvidersFrontend from "~/modelProviders/modelProvidersFrontend";
|
||||||
|
|
||||||
export default function OutputCell({
|
export default function OutputCell({
|
||||||
scenario,
|
scenario,
|
||||||
@@ -33,15 +33,17 @@ export default function OutputCell({
|
|||||||
|
|
||||||
if (!templateHasVariables) disabledReason = "Add a value to the scenario variables to see output";
|
if (!templateHasVariables) disabledReason = "Add a value to the scenario variables to see output";
|
||||||
|
|
||||||
// if (variant.config === null || Object.keys(variant.config).length === 0)
|
|
||||||
// disabledReason = "Save your prompt variant to see output";
|
|
||||||
|
|
||||||
const [refetchInterval, setRefetchInterval] = useState(0);
|
const [refetchInterval, setRefetchInterval] = useState(0);
|
||||||
const { data: cell, isLoading: queryLoading } = api.scenarioVariantCells.get.useQuery(
|
const { data: cell, isLoading: queryLoading } = api.scenarioVariantCells.get.useQuery(
|
||||||
{ scenarioId: scenario.id, variantId: variant.id },
|
{ scenarioId: scenario.id, variantId: variant.id },
|
||||||
{ refetchInterval },
|
{ refetchInterval },
|
||||||
);
|
);
|
||||||
|
|
||||||
|
const provider =
|
||||||
|
modelProvidersFrontend[variant.modelProvider as keyof typeof modelProvidersFrontend];
|
||||||
|
|
||||||
|
type OutputSchema = Parameters<typeof provider.normalizeOutput>[0];
|
||||||
|
|
||||||
const { mutateAsync: hardRefetchMutate } = api.scenarioVariantCells.forceRefetch.useMutation();
|
const { mutateAsync: hardRefetchMutate } = api.scenarioVariantCells.forceRefetch.useMutation();
|
||||||
const [hardRefetch, hardRefetching] = useHandledAsyncCallback(async () => {
|
const [hardRefetch, hardRefetching] = useHandledAsyncCallback(async () => {
|
||||||
await hardRefetchMutate({ scenarioId: scenario.id, variantId: variant.id });
|
await hardRefetchMutate({ scenarioId: scenario.id, variantId: variant.id });
|
||||||
@@ -66,8 +68,7 @@ export default function OutputCell({
|
|||||||
const modelOutput = cell?.modelOutput;
|
const modelOutput = cell?.modelOutput;
|
||||||
|
|
||||||
// Disconnect from socket if we're not streaming anymore
|
// Disconnect from socket if we're not streaming anymore
|
||||||
const streamedMessage = useSocket(cell?.streamingChannel);
|
const streamedMessage = useSocket<OutputSchema>(cell?.streamingChannel);
|
||||||
const streamedContent = streamedMessage?.choices?.[0]?.message?.content;
|
|
||||||
|
|
||||||
if (!vars) return null;
|
if (!vars) return null;
|
||||||
|
|
||||||
@@ -86,19 +87,13 @@ export default function OutputCell({
|
|||||||
return <ErrorHandler cell={cell} refetchOutput={hardRefetch} />;
|
return <ErrorHandler cell={cell} refetchOutput={hardRefetch} />;
|
||||||
}
|
}
|
||||||
|
|
||||||
const response = modelOutput?.output as unknown as ChatCompletion;
|
const normalizedOutput = modelOutput
|
||||||
const message = response?.choices?.[0]?.message;
|
? provider.normalizeOutput(modelOutput.output as unknown as OutputSchema)
|
||||||
|
: streamedMessage
|
||||||
if (modelOutput && message?.function_call) {
|
? provider.normalizeOutput(streamedMessage)
|
||||||
const rawArgs = message.function_call.arguments ?? "null";
|
: null;
|
||||||
let parsedArgs: string;
|
|
||||||
try {
|
|
||||||
parsedArgs = JSON.parse(rawArgs);
|
|
||||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
||||||
} catch (e: any) {
|
|
||||||
parsedArgs = `Failed to parse arguments as JSON: '${rawArgs}' ERROR: ${e.message as string}`;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
if (modelOutput && normalizedOutput?.type === "json") {
|
||||||
return (
|
return (
|
||||||
<VStack
|
<VStack
|
||||||
w="100%"
|
w="100%"
|
||||||
@@ -119,13 +114,7 @@ export default function OutputCell({
|
|||||||
}}
|
}}
|
||||||
wrapLines
|
wrapLines
|
||||||
>
|
>
|
||||||
{stringify(
|
{stringify(normalizedOutput.value, { maxLength: 40 })}
|
||||||
{
|
|
||||||
function: message.function_call.name,
|
|
||||||
args: parsedArgs,
|
|
||||||
},
|
|
||||||
{ maxLength: 40 },
|
|
||||||
)}
|
|
||||||
</SyntaxHighlighter>
|
</SyntaxHighlighter>
|
||||||
</VStack>
|
</VStack>
|
||||||
<OutputStats modelOutput={modelOutput} scenario={scenario} />
|
<OutputStats modelOutput={modelOutput} scenario={scenario} />
|
||||||
@@ -133,8 +122,7 @@ export default function OutputCell({
|
|||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
const contentToDisplay =
|
const contentToDisplay = (normalizedOutput?.type === "text" && normalizedOutput.value) || "";
|
||||||
message?.content ?? streamedContent ?? JSON.stringify(modelOutput?.output);
|
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<VStack w="100%" h="100%" justifyContent="space-between" whiteSpace="pre-wrap">
|
<VStack w="100%" h="100%" justifyContent="space-between" whiteSpace="pre-wrap">
|
||||||
|
|||||||
@@ -50,8 +50,6 @@ export default function VariantEditor(props: { variant: PromptVariant }) {
|
|||||||
// Make sure the user defined the prompt with the string "prompt\w*=" somewhere
|
// Make sure the user defined the prompt with the string "prompt\w*=" somewhere
|
||||||
const promptRegex = /definePrompt\(/;
|
const promptRegex = /definePrompt\(/;
|
||||||
if (!promptRegex.test(currentFn)) {
|
if (!promptRegex.test(currentFn)) {
|
||||||
console.log("no prompt");
|
|
||||||
console.log(currentFn);
|
|
||||||
toast({
|
toast({
|
||||||
title: "Missing prompt",
|
title: "Missing prompt",
|
||||||
description: "Please define the prompt (eg. `definePrompt(...`",
|
description: "Please define the prompt (eg. `definePrompt(...`",
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
import { type JSONSchema4Object } from "json-schema";
|
import { type JSONSchema4Object } from "json-schema";
|
||||||
import modelProviders from ".";
|
import modelProviders from "./modelProviders";
|
||||||
import { compile } from "json-schema-to-typescript";
|
import { compile } from "json-schema-to-typescript";
|
||||||
import dedent from "dedent";
|
import dedent from "dedent";
|
||||||
|
|
||||||
|
|||||||
10
src/modelProviders/modelProvidersFrontend.ts
Normal file
10
src/modelProviders/modelProvidersFrontend.ts
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
import modelProviderFrontend from "./openai-ChatCompletion/frontend";
|
||||||
|
|
||||||
|
// Keep attributes here that need to be accessible from the frontend. We can't
|
||||||
|
// just include them in the default `modelProviders` object because it has some
|
||||||
|
// transient dependencies that can only be imported on the server.
|
||||||
|
const modelProvidersFrontend = {
|
||||||
|
"openai/ChatCompletion": modelProviderFrontend,
|
||||||
|
} as const;
|
||||||
|
|
||||||
|
export default modelProvidersFrontend;
|
||||||
42
src/modelProviders/openai-ChatCompletion/frontend.ts
Normal file
42
src/modelProviders/openai-ChatCompletion/frontend.ts
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
import { type JsonValue } from "type-fest";
|
||||||
|
import { type OpenaiChatModelProvider } from ".";
|
||||||
|
import { type ModelProviderFrontend } from "../types";
|
||||||
|
|
||||||
|
const modelProviderFrontend: ModelProviderFrontend<OpenaiChatModelProvider> = {
|
||||||
|
normalizeOutput: (output) => {
|
||||||
|
const message = output.choices[0]?.message;
|
||||||
|
if (!message)
|
||||||
|
return {
|
||||||
|
type: "json",
|
||||||
|
value: output as unknown as JsonValue,
|
||||||
|
};
|
||||||
|
|
||||||
|
if (message.content) {
|
||||||
|
return {
|
||||||
|
type: "text",
|
||||||
|
value: message.content,
|
||||||
|
};
|
||||||
|
} else if (message.function_call) {
|
||||||
|
let args = message.function_call.arguments ?? "";
|
||||||
|
try {
|
||||||
|
args = JSON.parse(args);
|
||||||
|
} catch (e) {
|
||||||
|
// Ignore
|
||||||
|
}
|
||||||
|
return {
|
||||||
|
type: "json",
|
||||||
|
value: {
|
||||||
|
...message.function_call,
|
||||||
|
arguments: args,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
} else {
|
||||||
|
return {
|
||||||
|
type: "json",
|
||||||
|
value: message as unknown as JsonValue,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
export default modelProviderFrontend;
|
||||||
142
src/modelProviders/openai-ChatCompletion/getCompletion.ts
Normal file
142
src/modelProviders/openai-ChatCompletion/getCompletion.ts
Normal file
@@ -0,0 +1,142 @@
|
|||||||
|
/* eslint-disable @typescript-eslint/no-unsafe-call */
|
||||||
|
import {
|
||||||
|
type ChatCompletionChunk,
|
||||||
|
type ChatCompletion,
|
||||||
|
type CompletionCreateParams,
|
||||||
|
} from "openai/resources/chat";
|
||||||
|
import { countOpenAIChatTokens } from "~/utils/countTokens";
|
||||||
|
import { type CompletionResponse } from "../types";
|
||||||
|
import { omit } from "lodash-es";
|
||||||
|
import { openai } from "~/server/utils/openai";
|
||||||
|
import { type OpenAIChatModel } from "~/server/types";
|
||||||
|
import { truthyFilter } from "~/utils/utils";
|
||||||
|
import { APIError } from "openai";
|
||||||
|
import { modelStats } from "../modelStats";
|
||||||
|
|
||||||
|
const mergeStreamedChunks = (
|
||||||
|
base: ChatCompletion | null,
|
||||||
|
chunk: ChatCompletionChunk,
|
||||||
|
): ChatCompletion => {
|
||||||
|
if (base === null) {
|
||||||
|
return mergeStreamedChunks({ ...chunk, choices: [] }, chunk);
|
||||||
|
}
|
||||||
|
|
||||||
|
const choices = [...base.choices];
|
||||||
|
for (const choice of chunk.choices) {
|
||||||
|
const baseChoice = choices.find((c) => c.index === choice.index);
|
||||||
|
if (baseChoice) {
|
||||||
|
baseChoice.finish_reason = choice.finish_reason ?? baseChoice.finish_reason;
|
||||||
|
baseChoice.message = baseChoice.message ?? { role: "assistant" };
|
||||||
|
|
||||||
|
if (choice.delta?.content)
|
||||||
|
baseChoice.message.content =
|
||||||
|
((baseChoice.message.content as string) ?? "") + (choice.delta.content ?? "");
|
||||||
|
if (choice.delta?.function_call) {
|
||||||
|
const fnCall = baseChoice.message.function_call ?? {};
|
||||||
|
fnCall.name =
|
||||||
|
((fnCall.name as string) ?? "") + ((choice.delta.function_call.name as string) ?? "");
|
||||||
|
fnCall.arguments =
|
||||||
|
((fnCall.arguments as string) ?? "") +
|
||||||
|
((choice.delta.function_call.arguments as string) ?? "");
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
choices.push({ ...omit(choice, "delta"), message: { role: "assistant", ...choice.delta } });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const merged: ChatCompletion = {
|
||||||
|
...base,
|
||||||
|
choices,
|
||||||
|
};
|
||||||
|
|
||||||
|
return merged;
|
||||||
|
};
|
||||||
|
|
||||||
|
export async function getCompletion(
|
||||||
|
input: CompletionCreateParams,
|
||||||
|
onStream: ((partialOutput: ChatCompletion) => void) | null,
|
||||||
|
): Promise<CompletionResponse<ChatCompletion>> {
|
||||||
|
const start = Date.now();
|
||||||
|
let finalCompletion: ChatCompletion | null = null;
|
||||||
|
let promptTokens: number | undefined = undefined;
|
||||||
|
let completionTokens: number | undefined = undefined;
|
||||||
|
|
||||||
|
try {
|
||||||
|
if (onStream) {
|
||||||
|
const resp = await openai.chat.completions.create(
|
||||||
|
{ ...input, stream: true },
|
||||||
|
{
|
||||||
|
maxRetries: 0,
|
||||||
|
},
|
||||||
|
);
|
||||||
|
for await (const part of resp) {
|
||||||
|
finalCompletion = mergeStreamedChunks(finalCompletion, part);
|
||||||
|
onStream(finalCompletion);
|
||||||
|
}
|
||||||
|
if (!finalCompletion) {
|
||||||
|
return {
|
||||||
|
type: "error",
|
||||||
|
message: "Streaming failed to return a completion",
|
||||||
|
autoRetry: false,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
try {
|
||||||
|
promptTokens = countOpenAIChatTokens(
|
||||||
|
input.model as keyof typeof OpenAIChatModel,
|
||||||
|
input.messages,
|
||||||
|
);
|
||||||
|
completionTokens = countOpenAIChatTokens(
|
||||||
|
input.model as keyof typeof OpenAIChatModel,
|
||||||
|
finalCompletion.choices.map((c) => c.message).filter(truthyFilter),
|
||||||
|
);
|
||||||
|
} catch (err) {
|
||||||
|
// TODO handle this, library seems like maybe it doesn't work with function calls?
|
||||||
|
console.error(err);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
const resp = await openai.chat.completions.create(
|
||||||
|
{ ...input, stream: false },
|
||||||
|
{
|
||||||
|
maxRetries: 0,
|
||||||
|
},
|
||||||
|
);
|
||||||
|
finalCompletion = resp;
|
||||||
|
promptTokens = resp.usage?.prompt_tokens ?? 0;
|
||||||
|
completionTokens = resp.usage?.completion_tokens ?? 0;
|
||||||
|
}
|
||||||
|
const timeToComplete = Date.now() - start;
|
||||||
|
|
||||||
|
const stats = modelStats[input.model as keyof typeof OpenAIChatModel];
|
||||||
|
let cost = undefined;
|
||||||
|
if (stats && promptTokens && completionTokens) {
|
||||||
|
cost = promptTokens * stats.promptTokenPrice + completionTokens * stats.completionTokenPrice;
|
||||||
|
}
|
||||||
|
|
||||||
|
return {
|
||||||
|
type: "success",
|
||||||
|
statusCode: 200,
|
||||||
|
value: finalCompletion,
|
||||||
|
timeToComplete,
|
||||||
|
promptTokens,
|
||||||
|
completionTokens,
|
||||||
|
cost,
|
||||||
|
};
|
||||||
|
} catch (error: unknown) {
|
||||||
|
console.error("ERROR IS", error);
|
||||||
|
if (error instanceof APIError) {
|
||||||
|
return {
|
||||||
|
type: "error",
|
||||||
|
message: error.message,
|
||||||
|
autoRetry: error.status === 429 || error.status === 503,
|
||||||
|
statusCode: error.status,
|
||||||
|
};
|
||||||
|
} else {
|
||||||
|
console.error(error);
|
||||||
|
return {
|
||||||
|
type: "error",
|
||||||
|
message: (error as Error).message,
|
||||||
|
autoRetry: true,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -1,7 +1,8 @@
|
|||||||
import { type JSONSchema4 } from "json-schema";
|
import { type JSONSchema4 } from "json-schema";
|
||||||
import { type ModelProvider } from "../types";
|
import { type ModelProvider } from "../types";
|
||||||
import inputSchema from "./codegen/input.schema.json";
|
import inputSchema from "./codegen/input.schema.json";
|
||||||
import { type CompletionCreateParams } from "openai/resources/chat";
|
import { type ChatCompletion, type CompletionCreateParams } from "openai/resources/chat";
|
||||||
|
import { getCompletion } from "./getCompletion";
|
||||||
|
|
||||||
const supportedModels = [
|
const supportedModels = [
|
||||||
"gpt-4-0613",
|
"gpt-4-0613",
|
||||||
@@ -12,7 +13,13 @@ const supportedModels = [
|
|||||||
|
|
||||||
type SupportedModel = (typeof supportedModels)[number];
|
type SupportedModel = (typeof supportedModels)[number];
|
||||||
|
|
||||||
const modelProvider: ModelProvider<SupportedModel, CompletionCreateParams> = {
|
export type OpenaiChatModelProvider = ModelProvider<
|
||||||
|
SupportedModel,
|
||||||
|
CompletionCreateParams,
|
||||||
|
ChatCompletion
|
||||||
|
>;
|
||||||
|
|
||||||
|
const modelProvider: OpenaiChatModelProvider = {
|
||||||
name: "OpenAI ChatCompletion",
|
name: "OpenAI ChatCompletion",
|
||||||
models: {
|
models: {
|
||||||
"gpt-4-0613": {
|
"gpt-4-0613": {
|
||||||
@@ -49,6 +56,7 @@ const modelProvider: ModelProvider<SupportedModel, CompletionCreateParams> = {
|
|||||||
},
|
},
|
||||||
inputSchema: inputSchema as JSONSchema4,
|
inputSchema: inputSchema as JSONSchema4,
|
||||||
shouldStream: (input) => input.stream ?? false,
|
shouldStream: (input) => input.stream ?? false,
|
||||||
|
getCompletion,
|
||||||
};
|
};
|
||||||
|
|
||||||
export default modelProvider;
|
export default modelProvider;
|
||||||
|
|||||||
@@ -1,14 +1,48 @@
|
|||||||
import { type JSONSchema4 } from "json-schema";
|
import { type JSONSchema4 } from "json-schema";
|
||||||
|
import { type JsonValue } from "type-fest";
|
||||||
|
|
||||||
export type ModelProviderModel = {
|
type ModelProviderModel = {
|
||||||
name: string;
|
name: string;
|
||||||
learnMore: string;
|
learnMore: string;
|
||||||
};
|
};
|
||||||
|
|
||||||
export type ModelProvider<SupportedModels extends string, InputSchema> = {
|
export type CompletionResponse<T> =
|
||||||
|
| { type: "error"; message: string; autoRetry: boolean; statusCode?: number }
|
||||||
|
| {
|
||||||
|
type: "success";
|
||||||
|
value: T;
|
||||||
|
timeToComplete: number;
|
||||||
|
statusCode: number;
|
||||||
|
promptTokens?: number;
|
||||||
|
completionTokens?: number;
|
||||||
|
cost?: number;
|
||||||
|
};
|
||||||
|
|
||||||
|
export type ModelProvider<SupportedModels extends string, InputSchema, OutputSchema> = {
|
||||||
name: string;
|
name: string;
|
||||||
models: Record<SupportedModels, ModelProviderModel>;
|
models: Record<SupportedModels, ModelProviderModel>;
|
||||||
getModel: (input: InputSchema) => SupportedModels | null;
|
getModel: (input: InputSchema) => SupportedModels | null;
|
||||||
shouldStream: (input: InputSchema) => boolean;
|
shouldStream: (input: InputSchema) => boolean;
|
||||||
inputSchema: JSONSchema4;
|
inputSchema: JSONSchema4;
|
||||||
|
getCompletion: (
|
||||||
|
input: InputSchema,
|
||||||
|
onStream: ((partialOutput: OutputSchema) => void) | null,
|
||||||
|
) => Promise<CompletionResponse<OutputSchema>>;
|
||||||
|
|
||||||
|
// This is just a convenience for type inference, don't use it at runtime
|
||||||
|
_outputSchema?: OutputSchema | null;
|
||||||
|
};
|
||||||
|
|
||||||
|
export type NormalizedOutput =
|
||||||
|
| {
|
||||||
|
type: "text";
|
||||||
|
value: string;
|
||||||
|
}
|
||||||
|
| {
|
||||||
|
type: "json";
|
||||||
|
value: JsonValue;
|
||||||
|
};
|
||||||
|
|
||||||
|
export type ModelProviderFrontend<ModelProviderT extends ModelProvider<any, any, any>> = {
|
||||||
|
normalizeOutput: (output: NonNullable<ModelProviderT["_outputSchema"]>) => NormalizedOutput;
|
||||||
};
|
};
|
||||||
|
|||||||
19
src/server/scripts/openai-test.ts
Normal file
19
src/server/scripts/openai-test.ts
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
import "dotenv/config";
|
||||||
|
import { openai } from "../utils/openai";
|
||||||
|
|
||||||
|
const resp = await openai.chat.completions.create({
|
||||||
|
model: "gpt-3.5-turbo-0613",
|
||||||
|
stream: true,
|
||||||
|
messages: [
|
||||||
|
{
|
||||||
|
role: "user",
|
||||||
|
content: "count to 20",
|
||||||
|
},
|
||||||
|
],
|
||||||
|
});
|
||||||
|
|
||||||
|
for await (const part of resp) {
|
||||||
|
console.log("part", part);
|
||||||
|
}
|
||||||
|
|
||||||
|
console.log("final resp", resp);
|
||||||
@@ -1,15 +1,18 @@
|
|||||||
import { prisma } from "~/server/db";
|
import { prisma } from "~/server/db";
|
||||||
import defineTask from "./defineTask";
|
import defineTask from "./defineTask";
|
||||||
import { type CompletionResponse, getOpenAIChatCompletion } from "../utils/getCompletion";
|
|
||||||
import { sleep } from "../utils/sleep";
|
import { sleep } from "../utils/sleep";
|
||||||
import { generateChannel } from "~/utils/generateChannel";
|
import { generateChannel } from "~/utils/generateChannel";
|
||||||
import { runEvalsForOutput } from "../utils/evaluations";
|
import { runEvalsForOutput } from "../utils/evaluations";
|
||||||
import { type CompletionCreateParams } from "openai/resources/chat";
|
|
||||||
import { type Prisma } from "@prisma/client";
|
import { type Prisma } from "@prisma/client";
|
||||||
import parseConstructFn from "../utils/parseConstructFn";
|
import parseConstructFn from "../utils/parseConstructFn";
|
||||||
import hashPrompt from "../utils/hashPrompt";
|
import hashPrompt from "../utils/hashPrompt";
|
||||||
import { type JsonObject } from "type-fest";
|
import { type JsonObject } from "type-fest";
|
||||||
import modelProviders from "~/modelProviders";
|
import modelProviders from "~/modelProviders/modelProviders";
|
||||||
|
import { wsConnection } from "~/utils/wsConnection";
|
||||||
|
|
||||||
|
export type queryLLMJob = {
|
||||||
|
scenarioVariantCellId: string;
|
||||||
|
};
|
||||||
|
|
||||||
const MAX_AUTO_RETRIES = 10;
|
const MAX_AUTO_RETRIES = 10;
|
||||||
const MIN_DELAY = 500; // milliseconds
|
const MIN_DELAY = 500; // milliseconds
|
||||||
@@ -21,51 +24,6 @@ function calculateDelay(numPreviousTries: number): number {
|
|||||||
return baseDelay + jitter;
|
return baseDelay + jitter;
|
||||||
}
|
}
|
||||||
|
|
||||||
const getCompletionWithRetries = async (
|
|
||||||
cellId: string,
|
|
||||||
payload: JsonObject,
|
|
||||||
channel?: string,
|
|
||||||
): Promise<CompletionResponse> => {
|
|
||||||
let modelResponse: CompletionResponse | null = null;
|
|
||||||
try {
|
|
||||||
for (let i = 0; i < MAX_AUTO_RETRIES; i++) {
|
|
||||||
modelResponse = await getOpenAIChatCompletion(
|
|
||||||
payload as unknown as CompletionCreateParams,
|
|
||||||
channel,
|
|
||||||
);
|
|
||||||
if (
|
|
||||||
(modelResponse.statusCode !== 429 && modelResponse.statusCode !== 503) ||
|
|
||||||
i === MAX_AUTO_RETRIES - 1
|
|
||||||
) {
|
|
||||||
return modelResponse;
|
|
||||||
}
|
|
||||||
const delay = calculateDelay(i);
|
|
||||||
await prisma.scenarioVariantCell.update({
|
|
||||||
where: { id: cellId },
|
|
||||||
data: {
|
|
||||||
errorMessage: "Rate limit exceeded",
|
|
||||||
statusCode: 429,
|
|
||||||
retryTime: new Date(Date.now() + delay),
|
|
||||||
},
|
|
||||||
});
|
|
||||||
// TODO: Maybe requeue the job so other jobs can run in the future?
|
|
||||||
await sleep(delay);
|
|
||||||
}
|
|
||||||
throw new Error("Max retries limit reached");
|
|
||||||
} catch (error: unknown) {
|
|
||||||
return {
|
|
||||||
statusCode: modelResponse?.statusCode ?? 500,
|
|
||||||
errorMessage: modelResponse?.errorMessage ?? (error as Error).message,
|
|
||||||
output: null,
|
|
||||||
timeToComplete: 0,
|
|
||||||
};
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
export type queryLLMJob = {
|
|
||||||
scenarioVariantCellId: string;
|
|
||||||
};
|
|
||||||
|
|
||||||
export const queryLLM = defineTask<queryLLMJob>("queryLLM", async (task) => {
|
export const queryLLM = defineTask<queryLLMJob>("queryLLM", async (task) => {
|
||||||
const { scenarioVariantCellId } = task;
|
const { scenarioVariantCellId } = task;
|
||||||
const cell = await prisma.scenarioVariantCell.findUnique({
|
const cell = await prisma.scenarioVariantCell.findUnique({
|
||||||
@@ -141,57 +99,67 @@ export const queryLLM = defineTask<queryLLMJob>("queryLLM", async (task) => {
|
|||||||
|
|
||||||
const provider = modelProviders[prompt.modelProvider];
|
const provider = modelProviders[prompt.modelProvider];
|
||||||
|
|
||||||
const streamingEnabled = provider.shouldStream(prompt.modelInput);
|
const streamingChannel = provider.shouldStream(prompt.modelInput) ? generateChannel() : null;
|
||||||
let streamingChannel;
|
|
||||||
|
|
||||||
if (streamingEnabled) {
|
if (streamingChannel) {
|
||||||
streamingChannel = generateChannel();
|
|
||||||
// Save streaming channel so that UI can connect to it
|
// Save streaming channel so that UI can connect to it
|
||||||
await prisma.scenarioVariantCell.update({
|
await prisma.scenarioVariantCell.update({
|
||||||
where: { id: scenarioVariantCellId },
|
where: { id: scenarioVariantCellId },
|
||||||
data: { streamingChannel },
|
data: { streamingChannel },
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
const onStream = streamingChannel
|
||||||
|
? (partialOutput: (typeof provider)["_outputSchema"]) => {
|
||||||
|
wsConnection.emit("message", { channel: streamingChannel, payload: partialOutput });
|
||||||
|
}
|
||||||
|
: null;
|
||||||
|
|
||||||
const modelResponse = await getCompletionWithRetries(
|
for (let i = 0; true; i++) {
|
||||||
scenarioVariantCellId,
|
const response = await provider.getCompletion(prompt.modelInput, onStream);
|
||||||
prompt.modelInput as unknown as JsonObject,
|
if (response.type === "success") {
|
||||||
streamingChannel,
|
|
||||||
);
|
|
||||||
|
|
||||||
let modelOutput = null;
|
|
||||||
if (modelResponse.statusCode === 200) {
|
|
||||||
const inputHash = hashPrompt(prompt);
|
const inputHash = hashPrompt(prompt);
|
||||||
|
|
||||||
modelOutput = await prisma.modelOutput.create({
|
const modelOutput = await prisma.modelOutput.create({
|
||||||
data: {
|
data: {
|
||||||
scenarioVariantCellId,
|
scenarioVariantCellId,
|
||||||
inputHash,
|
inputHash,
|
||||||
output: modelResponse.output as unknown as Prisma.InputJsonObject,
|
output: response.value as unknown as Prisma.InputJsonObject,
|
||||||
timeToComplete: modelResponse.timeToComplete,
|
timeToComplete: response.timeToComplete,
|
||||||
promptTokens: modelResponse.promptTokens,
|
promptTokens: response.promptTokens,
|
||||||
completionTokens: modelResponse.completionTokens,
|
completionTokens: response.completionTokens,
|
||||||
cost: modelResponse.cost,
|
cost: response.cost,
|
||||||
},
|
},
|
||||||
});
|
});
|
||||||
}
|
|
||||||
|
|
||||||
await prisma.scenarioVariantCell.update({
|
await prisma.scenarioVariantCell.update({
|
||||||
where: { id: scenarioVariantCellId },
|
where: { id: scenarioVariantCellId },
|
||||||
data: {
|
data: {
|
||||||
statusCode: modelResponse.statusCode,
|
statusCode: response.statusCode,
|
||||||
errorMessage: modelResponse.errorMessage,
|
retrievalStatus: "COMPLETE",
|
||||||
streamingChannel: null,
|
|
||||||
retrievalStatus: modelOutput ? "COMPLETE" : "ERROR",
|
|
||||||
modelOutput: {
|
|
||||||
connect: {
|
|
||||||
id: modelOutput?.id,
|
|
||||||
},
|
|
||||||
},
|
|
||||||
},
|
},
|
||||||
});
|
});
|
||||||
|
|
||||||
if (modelOutput) {
|
|
||||||
await runEvalsForOutput(variant.experimentId, scenario, modelOutput);
|
await runEvalsForOutput(variant.experimentId, scenario, modelOutput);
|
||||||
|
break;
|
||||||
|
} else {
|
||||||
|
const shouldRetry = response.autoRetry && i < MAX_AUTO_RETRIES;
|
||||||
|
const delay = calculateDelay(i);
|
||||||
|
|
||||||
|
await prisma.scenarioVariantCell.update({
|
||||||
|
where: { id: scenarioVariantCellId },
|
||||||
|
data: {
|
||||||
|
errorMessage: response.message,
|
||||||
|
statusCode: response.statusCode,
|
||||||
|
retryTime: shouldRetry ? new Date(Date.now() + delay) : null,
|
||||||
|
retrievalStatus: shouldRetry ? "PENDING" : "ERROR",
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
if (shouldRetry) {
|
||||||
|
await sleep(delay);
|
||||||
|
} else {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|||||||
@@ -1,14 +1,3 @@
|
|||||||
export type JSONSerializable =
|
|
||||||
| string
|
|
||||||
| number
|
|
||||||
| boolean
|
|
||||||
| null
|
|
||||||
| JSONSerializable[]
|
|
||||||
| { [key: string]: JSONSerializable };
|
|
||||||
|
|
||||||
// Placeholder for now
|
|
||||||
export type OpenAIChatConfig = NonNullable<JSONSerializable>;
|
|
||||||
|
|
||||||
export enum OpenAIChatModel {
|
export enum OpenAIChatModel {
|
||||||
"gpt-4" = "gpt-4",
|
"gpt-4" = "gpt-4",
|
||||||
"gpt-4-0613" = "gpt-4-0613",
|
"gpt-4-0613" = "gpt-4-0613",
|
||||||
|
|||||||
@@ -1,5 +1,3 @@
|
|||||||
import { type JSONSerializable } from "../types";
|
|
||||||
|
|
||||||
export type VariableMap = Record<string, string>;
|
export type VariableMap = Record<string, string>;
|
||||||
|
|
||||||
// Escape quotes to match the way we encode JSON
|
// Escape quotes to match the way we encode JSON
|
||||||
@@ -15,24 +13,3 @@ export function escapeRegExp(str: string) {
|
|||||||
export function fillTemplate(template: string, variables: VariableMap): string {
|
export function fillTemplate(template: string, variables: VariableMap): string {
|
||||||
return template.replace(/{{\s*(\w+)\s*}}/g, (_, key: string) => variables[key] || "");
|
return template.replace(/{{\s*(\w+)\s*}}/g, (_, key: string) => variables[key] || "");
|
||||||
}
|
}
|
||||||
|
|
||||||
export function fillTemplateJson<T extends JSONSerializable>(
|
|
||||||
template: T,
|
|
||||||
variables: VariableMap,
|
|
||||||
): T {
|
|
||||||
if (typeof template === "string") {
|
|
||||||
return fillTemplate(template, variables) as T;
|
|
||||||
} else if (Array.isArray(template)) {
|
|
||||||
return template.map((item) => fillTemplateJson(item, variables)) as T;
|
|
||||||
} else if (typeof template === "object" && template !== null) {
|
|
||||||
return Object.keys(template).reduce(
|
|
||||||
(acc, key) => {
|
|
||||||
acc[key] = fillTemplateJson(template[key] as JSONSerializable, variables);
|
|
||||||
return acc;
|
|
||||||
},
|
|
||||||
{} as { [key: string]: JSONSerializable } & T,
|
|
||||||
);
|
|
||||||
} else {
|
|
||||||
return template;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|||||||
@@ -46,6 +46,7 @@ export const generateNewCell = async (variantId: string, scenarioId: string) =>
|
|||||||
testScenarioId: scenarioId,
|
testScenarioId: scenarioId,
|
||||||
statusCode: 400,
|
statusCode: 400,
|
||||||
errorMessage: parsedConstructFn.error,
|
errorMessage: parsedConstructFn.error,
|
||||||
|
retrievalStatus: "ERROR",
|
||||||
},
|
},
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
@@ -57,6 +58,7 @@ export const generateNewCell = async (variantId: string, scenarioId: string) =>
|
|||||||
promptVariantId: variantId,
|
promptVariantId: variantId,
|
||||||
testScenarioId: scenarioId,
|
testScenarioId: scenarioId,
|
||||||
prompt: parsedConstructFn.modelInput as unknown as Prisma.InputJsonValue,
|
prompt: parsedConstructFn.modelInput as unknown as Prisma.InputJsonValue,
|
||||||
|
retrievalStatus: "PENDING",
|
||||||
},
|
},
|
||||||
include: {
|
include: {
|
||||||
modelOutput: true,
|
modelOutput: true,
|
||||||
@@ -83,6 +85,10 @@ export const generateNewCell = async (variantId: string, scenarioId: string) =>
|
|||||||
updatedAt: matchingModelOutput.updatedAt,
|
updatedAt: matchingModelOutput.updatedAt,
|
||||||
},
|
},
|
||||||
});
|
});
|
||||||
|
await prisma.scenarioVariantCell.update({
|
||||||
|
where: { id: cell.id },
|
||||||
|
data: { retrievalStatus: "COMPLETE" },
|
||||||
|
});
|
||||||
} else {
|
} else {
|
||||||
cell = await queueLLMRetrievalTask(cell.id);
|
cell = await queueLLMRetrievalTask(cell.id);
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,107 +0,0 @@
|
|||||||
/* eslint-disable @typescript-eslint/no-unsafe-call */
|
|
||||||
import { isObject } from "lodash-es";
|
|
||||||
import { streamChatCompletion } from "./openai";
|
|
||||||
import { wsConnection } from "~/utils/wsConnection";
|
|
||||||
import { type ChatCompletion, type CompletionCreateParams } from "openai/resources/chat";
|
|
||||||
import { type SupportedModel, type OpenAIChatModel } from "../types";
|
|
||||||
import { env } from "~/env.mjs";
|
|
||||||
import { countOpenAIChatTokens } from "~/utils/countTokens";
|
|
||||||
import { rateLimitErrorMessage } from "~/sharedStrings";
|
|
||||||
import { modelStats } from "../../modelProviders/modelStats";
|
|
||||||
|
|
||||||
export type CompletionResponse = {
|
|
||||||
output: ChatCompletion | null;
|
|
||||||
statusCode: number;
|
|
||||||
errorMessage: string | null;
|
|
||||||
timeToComplete: number;
|
|
||||||
promptTokens?: number;
|
|
||||||
completionTokens?: number;
|
|
||||||
cost?: number;
|
|
||||||
};
|
|
||||||
|
|
||||||
export async function getOpenAIChatCompletion(
|
|
||||||
payload: CompletionCreateParams,
|
|
||||||
channel?: string,
|
|
||||||
): Promise<CompletionResponse> {
|
|
||||||
// If functions are enabled, disable streaming so that we get the full response with token counts
|
|
||||||
if (payload.functions?.length) payload.stream = false;
|
|
||||||
const start = Date.now();
|
|
||||||
const response = await fetch("https://api.openai.com/v1/chat/completions", {
|
|
||||||
method: "POST",
|
|
||||||
headers: {
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
Authorization: `Bearer ${env.OPENAI_API_KEY}`,
|
|
||||||
},
|
|
||||||
body: JSON.stringify(payload),
|
|
||||||
});
|
|
||||||
|
|
||||||
const resp: CompletionResponse = {
|
|
||||||
output: null,
|
|
||||||
errorMessage: null,
|
|
||||||
statusCode: response.status,
|
|
||||||
timeToComplete: 0,
|
|
||||||
};
|
|
||||||
|
|
||||||
try {
|
|
||||||
if (payload.stream) {
|
|
||||||
const completion = streamChatCompletion(payload as unknown as CompletionCreateParams);
|
|
||||||
let finalOutput: ChatCompletion | null = null;
|
|
||||||
await (async () => {
|
|
||||||
for await (const partialCompletion of completion) {
|
|
||||||
finalOutput = partialCompletion;
|
|
||||||
wsConnection.emit("message", { channel, payload: partialCompletion });
|
|
||||||
}
|
|
||||||
})().catch((err) => console.error(err));
|
|
||||||
if (finalOutput) {
|
|
||||||
resp.output = finalOutput;
|
|
||||||
resp.timeToComplete = Date.now() - start;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
resp.timeToComplete = Date.now() - start;
|
|
||||||
resp.output = await response.json();
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!response.ok) {
|
|
||||||
if (response.status === 429) {
|
|
||||||
resp.errorMessage = rateLimitErrorMessage;
|
|
||||||
} else if (
|
|
||||||
isObject(resp.output) &&
|
|
||||||
"error" in resp.output &&
|
|
||||||
isObject(resp.output.error) &&
|
|
||||||
"message" in resp.output.error
|
|
||||||
) {
|
|
||||||
// If it's an object, try to get the error message
|
|
||||||
resp.errorMessage = resp.output.error.message?.toString() ?? "Unknown error";
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (isObject(resp.output) && "usage" in resp.output) {
|
|
||||||
const usage = resp.output.usage as unknown as ChatCompletion.Usage;
|
|
||||||
resp.promptTokens = usage.prompt_tokens;
|
|
||||||
resp.completionTokens = usage.completion_tokens;
|
|
||||||
} else if (isObject(resp.output) && "choices" in resp.output) {
|
|
||||||
const model = payload.model as unknown as OpenAIChatModel;
|
|
||||||
resp.promptTokens = countOpenAIChatTokens(model, payload.messages);
|
|
||||||
const choices = resp.output.choices as unknown as ChatCompletion.Choice[];
|
|
||||||
const message = choices[0]?.message;
|
|
||||||
if (message) {
|
|
||||||
const messages = [message];
|
|
||||||
resp.completionTokens = countOpenAIChatTokens(model, messages);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const stats = modelStats[resp.output?.model as SupportedModel];
|
|
||||||
if (stats && resp.promptTokens && resp.completionTokens) {
|
|
||||||
resp.cost =
|
|
||||||
resp.promptTokens * stats.promptTokenPrice +
|
|
||||||
resp.completionTokens * stats.completionTokenPrice;
|
|
||||||
}
|
|
||||||
} catch (e) {
|
|
||||||
console.error(e);
|
|
||||||
if (response.ok) {
|
|
||||||
resp.errorMessage = "Failed to parse response";
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return resp;
|
|
||||||
}
|
|
||||||
@@ -1,64 +1,5 @@
|
|||||||
import { omit } from "lodash-es";
|
|
||||||
import { env } from "~/env.mjs";
|
import { env } from "~/env.mjs";
|
||||||
|
|
||||||
import OpenAI from "openai";
|
import OpenAI from "openai";
|
||||||
import {
|
|
||||||
type ChatCompletion,
|
|
||||||
type ChatCompletionChunk,
|
|
||||||
type CompletionCreateParams,
|
|
||||||
} from "openai/resources/chat";
|
|
||||||
|
|
||||||
export const openai = new OpenAI({ apiKey: env.OPENAI_API_KEY });
|
export const openai = new OpenAI({ apiKey: env.OPENAI_API_KEY });
|
||||||
|
|
||||||
export const mergeStreamedChunks = (
|
|
||||||
base: ChatCompletion | null,
|
|
||||||
chunk: ChatCompletionChunk,
|
|
||||||
): ChatCompletion => {
|
|
||||||
if (base === null) {
|
|
||||||
return mergeStreamedChunks({ ...chunk, choices: [] }, chunk);
|
|
||||||
}
|
|
||||||
|
|
||||||
const choices = [...base.choices];
|
|
||||||
for (const choice of chunk.choices) {
|
|
||||||
const baseChoice = choices.find((c) => c.index === choice.index);
|
|
||||||
if (baseChoice) {
|
|
||||||
baseChoice.finish_reason = choice.finish_reason ?? baseChoice.finish_reason;
|
|
||||||
baseChoice.message = baseChoice.message ?? { role: "assistant" };
|
|
||||||
|
|
||||||
if (choice.delta?.content)
|
|
||||||
baseChoice.message.content =
|
|
||||||
((baseChoice.message.content as string) ?? "") + (choice.delta.content ?? "");
|
|
||||||
if (choice.delta?.function_call) {
|
|
||||||
const fnCall = baseChoice.message.function_call ?? {};
|
|
||||||
fnCall.name =
|
|
||||||
((fnCall.name as string) ?? "") + ((choice.delta.function_call.name as string) ?? "");
|
|
||||||
fnCall.arguments =
|
|
||||||
((fnCall.arguments as string) ?? "") +
|
|
||||||
((choice.delta.function_call.arguments as string) ?? "");
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
choices.push({ ...omit(choice, "delta"), message: { role: "assistant", ...choice.delta } });
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const merged: ChatCompletion = {
|
|
||||||
...base,
|
|
||||||
choices,
|
|
||||||
};
|
|
||||||
|
|
||||||
return merged;
|
|
||||||
};
|
|
||||||
|
|
||||||
export const streamChatCompletion = async function* (body: CompletionCreateParams) {
|
|
||||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-call
|
|
||||||
const resp = await openai.chat.completions.create({
|
|
||||||
...body,
|
|
||||||
stream: true,
|
|
||||||
});
|
|
||||||
|
|
||||||
let mergedChunks: ChatCompletion | null = null;
|
|
||||||
for await (const part of resp) {
|
|
||||||
mergedChunks = mergeStreamedChunks(mergedChunks, part);
|
|
||||||
yield mergedChunks;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
import modelProviders from "~/modelProviders";
|
import modelProviders from "~/modelProviders/modelProviders";
|
||||||
import ivm from "isolated-vm";
|
import ivm from "isolated-vm";
|
||||||
import { isObject, isString } from "lodash-es";
|
import { isObject, isString } from "lodash-es";
|
||||||
import { type JsonObject } from "type-fest";
|
import { type JsonObject } from "type-fest";
|
||||||
|
|||||||
@@ -22,7 +22,6 @@ export function SyncAppStore() {
|
|||||||
const setApi = useAppStore((state) => state.setApi);
|
const setApi = useAppStore((state) => state.setApi);
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
console.log("setting api", utils);
|
|
||||||
setApi(utils);
|
setApi(utils);
|
||||||
}, [utils, setApi]);
|
}, [utils, setApi]);
|
||||||
|
|
||||||
|
|||||||
@@ -9,7 +9,7 @@ interface GPTTokensMessageItem {
|
|||||||
}
|
}
|
||||||
|
|
||||||
export const countOpenAIChatTokens = (
|
export const countOpenAIChatTokens = (
|
||||||
model: OpenAIChatModel,
|
model: keyof typeof OpenAIChatModel,
|
||||||
messages: ChatCompletion.Choice.Message[],
|
messages: ChatCompletion.Choice.Message[],
|
||||||
) => {
|
) => {
|
||||||
return new GPTTokens({ model, messages: messages as unknown as GPTTokensMessageItem[] })
|
return new GPTTokens({ model, messages: messages as unknown as GPTTokensMessageItem[] })
|
||||||
|
|||||||
@@ -1,13 +1,12 @@
|
|||||||
import { type ChatCompletion } from "openai/resources/chat";
|
|
||||||
import { useRef, useState, useEffect } from "react";
|
import { useRef, useState, useEffect } from "react";
|
||||||
import { io, type Socket } from "socket.io-client";
|
import { io, type Socket } from "socket.io-client";
|
||||||
import { env } from "~/env.mjs";
|
import { env } from "~/env.mjs";
|
||||||
|
|
||||||
const url = env.NEXT_PUBLIC_SOCKET_URL;
|
const url = env.NEXT_PUBLIC_SOCKET_URL;
|
||||||
|
|
||||||
export default function useSocket(channel?: string | null) {
|
export default function useSocket<T>(channel?: string | null) {
|
||||||
const socketRef = useRef<Socket>();
|
const socketRef = useRef<Socket>();
|
||||||
const [message, setMessage] = useState<ChatCompletion | null>(null);
|
const [message, setMessage] = useState<T | null>(null);
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
if (!channel) return;
|
if (!channel) return;
|
||||||
@@ -21,7 +20,7 @@ export default function useSocket(channel?: string | null) {
|
|||||||
socketRef.current?.emit("join", channel);
|
socketRef.current?.emit("join", channel);
|
||||||
|
|
||||||
// Listen for 'message' events
|
// Listen for 'message' events
|
||||||
socketRef.current?.on("message", (message: ChatCompletion) => {
|
socketRef.current?.on("message", (message: T) => {
|
||||||
setMessage(message);
|
setMessage(message);
|
||||||
});
|
});
|
||||||
});
|
});
|
||||||
|
|||||||
1
src/utils/utils.ts
Normal file
1
src/utils/utils.ts
Normal file
@@ -0,0 +1 @@
|
|||||||
|
export const truthyFilter = <T>(x: T | null | undefined): x is T => Boolean(x);
|
||||||
Reference in New Issue
Block a user