More work on modelProviders
I think everything that's OpenAI-specific is inside modelProviders at this point, so we can get started adding more providers.
This commit is contained in:
@@ -6,11 +6,11 @@ import SyntaxHighlighter from "react-syntax-highlighter";
|
||||
import { docco } from "react-syntax-highlighter/dist/cjs/styles/hljs";
|
||||
import stringify from "json-stringify-pretty-compact";
|
||||
import { type ReactElement, useState, useEffect } from "react";
|
||||
import { type ChatCompletion } from "openai/resources/chat";
|
||||
import useSocket from "~/utils/useSocket";
|
||||
import { OutputStats } from "./OutputStats";
|
||||
import { ErrorHandler } from "./ErrorHandler";
|
||||
import { CellOptions } from "./CellOptions";
|
||||
import modelProvidersFrontend from "~/modelProviders/modelProvidersFrontend";
|
||||
|
||||
export default function OutputCell({
|
||||
scenario,
|
||||
@@ -33,15 +33,17 @@ export default function OutputCell({
|
||||
|
||||
if (!templateHasVariables) disabledReason = "Add a value to the scenario variables to see output";
|
||||
|
||||
// if (variant.config === null || Object.keys(variant.config).length === 0)
|
||||
// disabledReason = "Save your prompt variant to see output";
|
||||
|
||||
const [refetchInterval, setRefetchInterval] = useState(0);
|
||||
const { data: cell, isLoading: queryLoading } = api.scenarioVariantCells.get.useQuery(
|
||||
{ scenarioId: scenario.id, variantId: variant.id },
|
||||
{ refetchInterval },
|
||||
);
|
||||
|
||||
const provider =
|
||||
modelProvidersFrontend[variant.modelProvider as keyof typeof modelProvidersFrontend];
|
||||
|
||||
type OutputSchema = Parameters<typeof provider.normalizeOutput>[0];
|
||||
|
||||
const { mutateAsync: hardRefetchMutate } = api.scenarioVariantCells.forceRefetch.useMutation();
|
||||
const [hardRefetch, hardRefetching] = useHandledAsyncCallback(async () => {
|
||||
await hardRefetchMutate({ scenarioId: scenario.id, variantId: variant.id });
|
||||
@@ -66,8 +68,7 @@ export default function OutputCell({
|
||||
const modelOutput = cell?.modelOutput;
|
||||
|
||||
// Disconnect from socket if we're not streaming anymore
|
||||
const streamedMessage = useSocket(cell?.streamingChannel);
|
||||
const streamedContent = streamedMessage?.choices?.[0]?.message?.content;
|
||||
const streamedMessage = useSocket<OutputSchema>(cell?.streamingChannel);
|
||||
|
||||
if (!vars) return null;
|
||||
|
||||
@@ -86,19 +87,13 @@ export default function OutputCell({
|
||||
return <ErrorHandler cell={cell} refetchOutput={hardRefetch} />;
|
||||
}
|
||||
|
||||
const response = modelOutput?.output as unknown as ChatCompletion;
|
||||
const message = response?.choices?.[0]?.message;
|
||||
|
||||
if (modelOutput && message?.function_call) {
|
||||
const rawArgs = message.function_call.arguments ?? "null";
|
||||
let parsedArgs: string;
|
||||
try {
|
||||
parsedArgs = JSON.parse(rawArgs);
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
} catch (e: any) {
|
||||
parsedArgs = `Failed to parse arguments as JSON: '${rawArgs}' ERROR: ${e.message as string}`;
|
||||
}
|
||||
const normalizedOutput = modelOutput
|
||||
? provider.normalizeOutput(modelOutput.output as unknown as OutputSchema)
|
||||
: streamedMessage
|
||||
? provider.normalizeOutput(streamedMessage)
|
||||
: null;
|
||||
|
||||
if (modelOutput && normalizedOutput?.type === "json") {
|
||||
return (
|
||||
<VStack
|
||||
w="100%"
|
||||
@@ -119,13 +114,7 @@ export default function OutputCell({
|
||||
}}
|
||||
wrapLines
|
||||
>
|
||||
{stringify(
|
||||
{
|
||||
function: message.function_call.name,
|
||||
args: parsedArgs,
|
||||
},
|
||||
{ maxLength: 40 },
|
||||
)}
|
||||
{stringify(normalizedOutput.value, { maxLength: 40 })}
|
||||
</SyntaxHighlighter>
|
||||
</VStack>
|
||||
<OutputStats modelOutput={modelOutput} scenario={scenario} />
|
||||
@@ -133,8 +122,7 @@ export default function OutputCell({
|
||||
);
|
||||
}
|
||||
|
||||
const contentToDisplay =
|
||||
message?.content ?? streamedContent ?? JSON.stringify(modelOutput?.output);
|
||||
const contentToDisplay = (normalizedOutput?.type === "text" && normalizedOutput.value) || "";
|
||||
|
||||
return (
|
||||
<VStack w="100%" h="100%" justifyContent="space-between" whiteSpace="pre-wrap">
|
||||
|
||||
@@ -50,8 +50,6 @@ export default function VariantEditor(props: { variant: PromptVariant }) {
|
||||
// Make sure the user defined the prompt with the string "prompt\w*=" somewhere
|
||||
const promptRegex = /definePrompt\(/;
|
||||
if (!promptRegex.test(currentFn)) {
|
||||
console.log("no prompt");
|
||||
console.log(currentFn);
|
||||
toast({
|
||||
title: "Missing prompt",
|
||||
description: "Please define the prompt (eg. `definePrompt(...`",
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import { type JSONSchema4Object } from "json-schema";
|
||||
import modelProviders from ".";
|
||||
import modelProviders from "./modelProviders";
|
||||
import { compile } from "json-schema-to-typescript";
|
||||
import dedent from "dedent";
|
||||
|
||||
|
||||
10
src/modelProviders/modelProvidersFrontend.ts
Normal file
10
src/modelProviders/modelProvidersFrontend.ts
Normal file
@@ -0,0 +1,10 @@
|
||||
import modelProviderFrontend from "./openai-ChatCompletion/frontend";
|
||||
|
||||
// Keep attributes here that need to be accessible from the frontend. We can't
|
||||
// just include them in the default `modelProviders` object because it has some
|
||||
// transient dependencies that can only be imported on the server.
|
||||
const modelProvidersFrontend = {
|
||||
"openai/ChatCompletion": modelProviderFrontend,
|
||||
} as const;
|
||||
|
||||
export default modelProvidersFrontend;
|
||||
42
src/modelProviders/openai-ChatCompletion/frontend.ts
Normal file
42
src/modelProviders/openai-ChatCompletion/frontend.ts
Normal file
@@ -0,0 +1,42 @@
|
||||
import { type JsonValue } from "type-fest";
|
||||
import { type OpenaiChatModelProvider } from ".";
|
||||
import { type ModelProviderFrontend } from "../types";
|
||||
|
||||
const modelProviderFrontend: ModelProviderFrontend<OpenaiChatModelProvider> = {
|
||||
normalizeOutput: (output) => {
|
||||
const message = output.choices[0]?.message;
|
||||
if (!message)
|
||||
return {
|
||||
type: "json",
|
||||
value: output as unknown as JsonValue,
|
||||
};
|
||||
|
||||
if (message.content) {
|
||||
return {
|
||||
type: "text",
|
||||
value: message.content,
|
||||
};
|
||||
} else if (message.function_call) {
|
||||
let args = message.function_call.arguments ?? "";
|
||||
try {
|
||||
args = JSON.parse(args);
|
||||
} catch (e) {
|
||||
// Ignore
|
||||
}
|
||||
return {
|
||||
type: "json",
|
||||
value: {
|
||||
...message.function_call,
|
||||
arguments: args,
|
||||
},
|
||||
};
|
||||
} else {
|
||||
return {
|
||||
type: "json",
|
||||
value: message as unknown as JsonValue,
|
||||
};
|
||||
}
|
||||
},
|
||||
};
|
||||
|
||||
export default modelProviderFrontend;
|
||||
142
src/modelProviders/openai-ChatCompletion/getCompletion.ts
Normal file
142
src/modelProviders/openai-ChatCompletion/getCompletion.ts
Normal file
@@ -0,0 +1,142 @@
|
||||
/* eslint-disable @typescript-eslint/no-unsafe-call */
|
||||
import {
|
||||
type ChatCompletionChunk,
|
||||
type ChatCompletion,
|
||||
type CompletionCreateParams,
|
||||
} from "openai/resources/chat";
|
||||
import { countOpenAIChatTokens } from "~/utils/countTokens";
|
||||
import { type CompletionResponse } from "../types";
|
||||
import { omit } from "lodash-es";
|
||||
import { openai } from "~/server/utils/openai";
|
||||
import { type OpenAIChatModel } from "~/server/types";
|
||||
import { truthyFilter } from "~/utils/utils";
|
||||
import { APIError } from "openai";
|
||||
import { modelStats } from "../modelStats";
|
||||
|
||||
const mergeStreamedChunks = (
|
||||
base: ChatCompletion | null,
|
||||
chunk: ChatCompletionChunk,
|
||||
): ChatCompletion => {
|
||||
if (base === null) {
|
||||
return mergeStreamedChunks({ ...chunk, choices: [] }, chunk);
|
||||
}
|
||||
|
||||
const choices = [...base.choices];
|
||||
for (const choice of chunk.choices) {
|
||||
const baseChoice = choices.find((c) => c.index === choice.index);
|
||||
if (baseChoice) {
|
||||
baseChoice.finish_reason = choice.finish_reason ?? baseChoice.finish_reason;
|
||||
baseChoice.message = baseChoice.message ?? { role: "assistant" };
|
||||
|
||||
if (choice.delta?.content)
|
||||
baseChoice.message.content =
|
||||
((baseChoice.message.content as string) ?? "") + (choice.delta.content ?? "");
|
||||
if (choice.delta?.function_call) {
|
||||
const fnCall = baseChoice.message.function_call ?? {};
|
||||
fnCall.name =
|
||||
((fnCall.name as string) ?? "") + ((choice.delta.function_call.name as string) ?? "");
|
||||
fnCall.arguments =
|
||||
((fnCall.arguments as string) ?? "") +
|
||||
((choice.delta.function_call.arguments as string) ?? "");
|
||||
}
|
||||
} else {
|
||||
choices.push({ ...omit(choice, "delta"), message: { role: "assistant", ...choice.delta } });
|
||||
}
|
||||
}
|
||||
|
||||
const merged: ChatCompletion = {
|
||||
...base,
|
||||
choices,
|
||||
};
|
||||
|
||||
return merged;
|
||||
};
|
||||
|
||||
export async function getCompletion(
|
||||
input: CompletionCreateParams,
|
||||
onStream: ((partialOutput: ChatCompletion) => void) | null,
|
||||
): Promise<CompletionResponse<ChatCompletion>> {
|
||||
const start = Date.now();
|
||||
let finalCompletion: ChatCompletion | null = null;
|
||||
let promptTokens: number | undefined = undefined;
|
||||
let completionTokens: number | undefined = undefined;
|
||||
|
||||
try {
|
||||
if (onStream) {
|
||||
const resp = await openai.chat.completions.create(
|
||||
{ ...input, stream: true },
|
||||
{
|
||||
maxRetries: 0,
|
||||
},
|
||||
);
|
||||
for await (const part of resp) {
|
||||
finalCompletion = mergeStreamedChunks(finalCompletion, part);
|
||||
onStream(finalCompletion);
|
||||
}
|
||||
if (!finalCompletion) {
|
||||
return {
|
||||
type: "error",
|
||||
message: "Streaming failed to return a completion",
|
||||
autoRetry: false,
|
||||
};
|
||||
}
|
||||
try {
|
||||
promptTokens = countOpenAIChatTokens(
|
||||
input.model as keyof typeof OpenAIChatModel,
|
||||
input.messages,
|
||||
);
|
||||
completionTokens = countOpenAIChatTokens(
|
||||
input.model as keyof typeof OpenAIChatModel,
|
||||
finalCompletion.choices.map((c) => c.message).filter(truthyFilter),
|
||||
);
|
||||
} catch (err) {
|
||||
// TODO handle this, library seems like maybe it doesn't work with function calls?
|
||||
console.error(err);
|
||||
}
|
||||
} else {
|
||||
const resp = await openai.chat.completions.create(
|
||||
{ ...input, stream: false },
|
||||
{
|
||||
maxRetries: 0,
|
||||
},
|
||||
);
|
||||
finalCompletion = resp;
|
||||
promptTokens = resp.usage?.prompt_tokens ?? 0;
|
||||
completionTokens = resp.usage?.completion_tokens ?? 0;
|
||||
}
|
||||
const timeToComplete = Date.now() - start;
|
||||
|
||||
const stats = modelStats[input.model as keyof typeof OpenAIChatModel];
|
||||
let cost = undefined;
|
||||
if (stats && promptTokens && completionTokens) {
|
||||
cost = promptTokens * stats.promptTokenPrice + completionTokens * stats.completionTokenPrice;
|
||||
}
|
||||
|
||||
return {
|
||||
type: "success",
|
||||
statusCode: 200,
|
||||
value: finalCompletion,
|
||||
timeToComplete,
|
||||
promptTokens,
|
||||
completionTokens,
|
||||
cost,
|
||||
};
|
||||
} catch (error: unknown) {
|
||||
console.error("ERROR IS", error);
|
||||
if (error instanceof APIError) {
|
||||
return {
|
||||
type: "error",
|
||||
message: error.message,
|
||||
autoRetry: error.status === 429 || error.status === 503,
|
||||
statusCode: error.status,
|
||||
};
|
||||
} else {
|
||||
console.error(error);
|
||||
return {
|
||||
type: "error",
|
||||
message: (error as Error).message,
|
||||
autoRetry: true,
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,7 +1,8 @@
|
||||
import { type JSONSchema4 } from "json-schema";
|
||||
import { type ModelProvider } from "../types";
|
||||
import inputSchema from "./codegen/input.schema.json";
|
||||
import { type CompletionCreateParams } from "openai/resources/chat";
|
||||
import { type ChatCompletion, type CompletionCreateParams } from "openai/resources/chat";
|
||||
import { getCompletion } from "./getCompletion";
|
||||
|
||||
const supportedModels = [
|
||||
"gpt-4-0613",
|
||||
@@ -12,7 +13,13 @@ const supportedModels = [
|
||||
|
||||
type SupportedModel = (typeof supportedModels)[number];
|
||||
|
||||
const modelProvider: ModelProvider<SupportedModel, CompletionCreateParams> = {
|
||||
export type OpenaiChatModelProvider = ModelProvider<
|
||||
SupportedModel,
|
||||
CompletionCreateParams,
|
||||
ChatCompletion
|
||||
>;
|
||||
|
||||
const modelProvider: OpenaiChatModelProvider = {
|
||||
name: "OpenAI ChatCompletion",
|
||||
models: {
|
||||
"gpt-4-0613": {
|
||||
@@ -49,6 +56,7 @@ const modelProvider: ModelProvider<SupportedModel, CompletionCreateParams> = {
|
||||
},
|
||||
inputSchema: inputSchema as JSONSchema4,
|
||||
shouldStream: (input) => input.stream ?? false,
|
||||
getCompletion,
|
||||
};
|
||||
|
||||
export default modelProvider;
|
||||
|
||||
@@ -1,14 +1,48 @@
|
||||
import { type JSONSchema4 } from "json-schema";
|
||||
import { type JsonValue } from "type-fest";
|
||||
|
||||
export type ModelProviderModel = {
|
||||
type ModelProviderModel = {
|
||||
name: string;
|
||||
learnMore: string;
|
||||
};
|
||||
|
||||
export type ModelProvider<SupportedModels extends string, InputSchema> = {
|
||||
export type CompletionResponse<T> =
|
||||
| { type: "error"; message: string; autoRetry: boolean; statusCode?: number }
|
||||
| {
|
||||
type: "success";
|
||||
value: T;
|
||||
timeToComplete: number;
|
||||
statusCode: number;
|
||||
promptTokens?: number;
|
||||
completionTokens?: number;
|
||||
cost?: number;
|
||||
};
|
||||
|
||||
export type ModelProvider<SupportedModels extends string, InputSchema, OutputSchema> = {
|
||||
name: string;
|
||||
models: Record<SupportedModels, ModelProviderModel>;
|
||||
getModel: (input: InputSchema) => SupportedModels | null;
|
||||
shouldStream: (input: InputSchema) => boolean;
|
||||
inputSchema: JSONSchema4;
|
||||
getCompletion: (
|
||||
input: InputSchema,
|
||||
onStream: ((partialOutput: OutputSchema) => void) | null,
|
||||
) => Promise<CompletionResponse<OutputSchema>>;
|
||||
|
||||
// This is just a convenience for type inference, don't use it at runtime
|
||||
_outputSchema?: OutputSchema | null;
|
||||
};
|
||||
|
||||
export type NormalizedOutput =
|
||||
| {
|
||||
type: "text";
|
||||
value: string;
|
||||
}
|
||||
| {
|
||||
type: "json";
|
||||
value: JsonValue;
|
||||
};
|
||||
|
||||
export type ModelProviderFrontend<ModelProviderT extends ModelProvider<any, any, any>> = {
|
||||
normalizeOutput: (output: NonNullable<ModelProviderT["_outputSchema"]>) => NormalizedOutput;
|
||||
};
|
||||
|
||||
19
src/server/scripts/openai-test.ts
Normal file
19
src/server/scripts/openai-test.ts
Normal file
@@ -0,0 +1,19 @@
|
||||
import "dotenv/config";
|
||||
import { openai } from "../utils/openai";
|
||||
|
||||
const resp = await openai.chat.completions.create({
|
||||
model: "gpt-3.5-turbo-0613",
|
||||
stream: true,
|
||||
messages: [
|
||||
{
|
||||
role: "user",
|
||||
content: "count to 20",
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
for await (const part of resp) {
|
||||
console.log("part", part);
|
||||
}
|
||||
|
||||
console.log("final resp", resp);
|
||||
@@ -1,15 +1,18 @@
|
||||
import { prisma } from "~/server/db";
|
||||
import defineTask from "./defineTask";
|
||||
import { type CompletionResponse, getOpenAIChatCompletion } from "../utils/getCompletion";
|
||||
import { sleep } from "../utils/sleep";
|
||||
import { generateChannel } from "~/utils/generateChannel";
|
||||
import { runEvalsForOutput } from "../utils/evaluations";
|
||||
import { type CompletionCreateParams } from "openai/resources/chat";
|
||||
import { type Prisma } from "@prisma/client";
|
||||
import parseConstructFn from "../utils/parseConstructFn";
|
||||
import hashPrompt from "../utils/hashPrompt";
|
||||
import { type JsonObject } from "type-fest";
|
||||
import modelProviders from "~/modelProviders";
|
||||
import modelProviders from "~/modelProviders/modelProviders";
|
||||
import { wsConnection } from "~/utils/wsConnection";
|
||||
|
||||
export type queryLLMJob = {
|
||||
scenarioVariantCellId: string;
|
||||
};
|
||||
|
||||
const MAX_AUTO_RETRIES = 10;
|
||||
const MIN_DELAY = 500; // milliseconds
|
||||
@@ -21,51 +24,6 @@ function calculateDelay(numPreviousTries: number): number {
|
||||
return baseDelay + jitter;
|
||||
}
|
||||
|
||||
const getCompletionWithRetries = async (
|
||||
cellId: string,
|
||||
payload: JsonObject,
|
||||
channel?: string,
|
||||
): Promise<CompletionResponse> => {
|
||||
let modelResponse: CompletionResponse | null = null;
|
||||
try {
|
||||
for (let i = 0; i < MAX_AUTO_RETRIES; i++) {
|
||||
modelResponse = await getOpenAIChatCompletion(
|
||||
payload as unknown as CompletionCreateParams,
|
||||
channel,
|
||||
);
|
||||
if (
|
||||
(modelResponse.statusCode !== 429 && modelResponse.statusCode !== 503) ||
|
||||
i === MAX_AUTO_RETRIES - 1
|
||||
) {
|
||||
return modelResponse;
|
||||
}
|
||||
const delay = calculateDelay(i);
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: cellId },
|
||||
data: {
|
||||
errorMessage: "Rate limit exceeded",
|
||||
statusCode: 429,
|
||||
retryTime: new Date(Date.now() + delay),
|
||||
},
|
||||
});
|
||||
// TODO: Maybe requeue the job so other jobs can run in the future?
|
||||
await sleep(delay);
|
||||
}
|
||||
throw new Error("Max retries limit reached");
|
||||
} catch (error: unknown) {
|
||||
return {
|
||||
statusCode: modelResponse?.statusCode ?? 500,
|
||||
errorMessage: modelResponse?.errorMessage ?? (error as Error).message,
|
||||
output: null,
|
||||
timeToComplete: 0,
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
export type queryLLMJob = {
|
||||
scenarioVariantCellId: string;
|
||||
};
|
||||
|
||||
export const queryLLM = defineTask<queryLLMJob>("queryLLM", async (task) => {
|
||||
const { scenarioVariantCellId } = task;
|
||||
const cell = await prisma.scenarioVariantCell.findUnique({
|
||||
@@ -141,57 +99,67 @@ export const queryLLM = defineTask<queryLLMJob>("queryLLM", async (task) => {
|
||||
|
||||
const provider = modelProviders[prompt.modelProvider];
|
||||
|
||||
const streamingEnabled = provider.shouldStream(prompt.modelInput);
|
||||
let streamingChannel;
|
||||
const streamingChannel = provider.shouldStream(prompt.modelInput) ? generateChannel() : null;
|
||||
|
||||
if (streamingEnabled) {
|
||||
streamingChannel = generateChannel();
|
||||
if (streamingChannel) {
|
||||
// Save streaming channel so that UI can connect to it
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: scenarioVariantCellId },
|
||||
data: { streamingChannel },
|
||||
});
|
||||
}
|
||||
const onStream = streamingChannel
|
||||
? (partialOutput: (typeof provider)["_outputSchema"]) => {
|
||||
wsConnection.emit("message", { channel: streamingChannel, payload: partialOutput });
|
||||
}
|
||||
: null;
|
||||
|
||||
const modelResponse = await getCompletionWithRetries(
|
||||
scenarioVariantCellId,
|
||||
prompt.modelInput as unknown as JsonObject,
|
||||
streamingChannel,
|
||||
);
|
||||
for (let i = 0; true; i++) {
|
||||
const response = await provider.getCompletion(prompt.modelInput, onStream);
|
||||
if (response.type === "success") {
|
||||
const inputHash = hashPrompt(prompt);
|
||||
|
||||
let modelOutput = null;
|
||||
if (modelResponse.statusCode === 200) {
|
||||
const inputHash = hashPrompt(prompt);
|
||||
|
||||
modelOutput = await prisma.modelOutput.create({
|
||||
data: {
|
||||
scenarioVariantCellId,
|
||||
inputHash,
|
||||
output: modelResponse.output as unknown as Prisma.InputJsonObject,
|
||||
timeToComplete: modelResponse.timeToComplete,
|
||||
promptTokens: modelResponse.promptTokens,
|
||||
completionTokens: modelResponse.completionTokens,
|
||||
cost: modelResponse.cost,
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: scenarioVariantCellId },
|
||||
data: {
|
||||
statusCode: modelResponse.statusCode,
|
||||
errorMessage: modelResponse.errorMessage,
|
||||
streamingChannel: null,
|
||||
retrievalStatus: modelOutput ? "COMPLETE" : "ERROR",
|
||||
modelOutput: {
|
||||
connect: {
|
||||
id: modelOutput?.id,
|
||||
const modelOutput = await prisma.modelOutput.create({
|
||||
data: {
|
||||
scenarioVariantCellId,
|
||||
inputHash,
|
||||
output: response.value as unknown as Prisma.InputJsonObject,
|
||||
timeToComplete: response.timeToComplete,
|
||||
promptTokens: response.promptTokens,
|
||||
completionTokens: response.completionTokens,
|
||||
cost: response.cost,
|
||||
},
|
||||
},
|
||||
},
|
||||
});
|
||||
});
|
||||
|
||||
if (modelOutput) {
|
||||
await runEvalsForOutput(variant.experimentId, scenario, modelOutput);
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: scenarioVariantCellId },
|
||||
data: {
|
||||
statusCode: response.statusCode,
|
||||
retrievalStatus: "COMPLETE",
|
||||
},
|
||||
});
|
||||
|
||||
await runEvalsForOutput(variant.experimentId, scenario, modelOutput);
|
||||
break;
|
||||
} else {
|
||||
const shouldRetry = response.autoRetry && i < MAX_AUTO_RETRIES;
|
||||
const delay = calculateDelay(i);
|
||||
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: scenarioVariantCellId },
|
||||
data: {
|
||||
errorMessage: response.message,
|
||||
statusCode: response.statusCode,
|
||||
retryTime: shouldRetry ? new Date(Date.now() + delay) : null,
|
||||
retrievalStatus: shouldRetry ? "PENDING" : "ERROR",
|
||||
},
|
||||
});
|
||||
|
||||
if (shouldRetry) {
|
||||
await sleep(delay);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
@@ -1,14 +1,3 @@
|
||||
export type JSONSerializable =
|
||||
| string
|
||||
| number
|
||||
| boolean
|
||||
| null
|
||||
| JSONSerializable[]
|
||||
| { [key: string]: JSONSerializable };
|
||||
|
||||
// Placeholder for now
|
||||
export type OpenAIChatConfig = NonNullable<JSONSerializable>;
|
||||
|
||||
export enum OpenAIChatModel {
|
||||
"gpt-4" = "gpt-4",
|
||||
"gpt-4-0613" = "gpt-4-0613",
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
import { type JSONSerializable } from "../types";
|
||||
|
||||
export type VariableMap = Record<string, string>;
|
||||
|
||||
// Escape quotes to match the way we encode JSON
|
||||
@@ -15,24 +13,3 @@ export function escapeRegExp(str: string) {
|
||||
export function fillTemplate(template: string, variables: VariableMap): string {
|
||||
return template.replace(/{{\s*(\w+)\s*}}/g, (_, key: string) => variables[key] || "");
|
||||
}
|
||||
|
||||
export function fillTemplateJson<T extends JSONSerializable>(
|
||||
template: T,
|
||||
variables: VariableMap,
|
||||
): T {
|
||||
if (typeof template === "string") {
|
||||
return fillTemplate(template, variables) as T;
|
||||
} else if (Array.isArray(template)) {
|
||||
return template.map((item) => fillTemplateJson(item, variables)) as T;
|
||||
} else if (typeof template === "object" && template !== null) {
|
||||
return Object.keys(template).reduce(
|
||||
(acc, key) => {
|
||||
acc[key] = fillTemplateJson(template[key] as JSONSerializable, variables);
|
||||
return acc;
|
||||
},
|
||||
{} as { [key: string]: JSONSerializable } & T,
|
||||
);
|
||||
} else {
|
||||
return template;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -46,6 +46,7 @@ export const generateNewCell = async (variantId: string, scenarioId: string) =>
|
||||
testScenarioId: scenarioId,
|
||||
statusCode: 400,
|
||||
errorMessage: parsedConstructFn.error,
|
||||
retrievalStatus: "ERROR",
|
||||
},
|
||||
});
|
||||
}
|
||||
@@ -57,6 +58,7 @@ export const generateNewCell = async (variantId: string, scenarioId: string) =>
|
||||
promptVariantId: variantId,
|
||||
testScenarioId: scenarioId,
|
||||
prompt: parsedConstructFn.modelInput as unknown as Prisma.InputJsonValue,
|
||||
retrievalStatus: "PENDING",
|
||||
},
|
||||
include: {
|
||||
modelOutput: true,
|
||||
@@ -83,6 +85,10 @@ export const generateNewCell = async (variantId: string, scenarioId: string) =>
|
||||
updatedAt: matchingModelOutput.updatedAt,
|
||||
},
|
||||
});
|
||||
await prisma.scenarioVariantCell.update({
|
||||
where: { id: cell.id },
|
||||
data: { retrievalStatus: "COMPLETE" },
|
||||
});
|
||||
} else {
|
||||
cell = await queueLLMRetrievalTask(cell.id);
|
||||
}
|
||||
|
||||
@@ -1,107 +0,0 @@
|
||||
/* eslint-disable @typescript-eslint/no-unsafe-call */
|
||||
import { isObject } from "lodash-es";
|
||||
import { streamChatCompletion } from "./openai";
|
||||
import { wsConnection } from "~/utils/wsConnection";
|
||||
import { type ChatCompletion, type CompletionCreateParams } from "openai/resources/chat";
|
||||
import { type SupportedModel, type OpenAIChatModel } from "../types";
|
||||
import { env } from "~/env.mjs";
|
||||
import { countOpenAIChatTokens } from "~/utils/countTokens";
|
||||
import { rateLimitErrorMessage } from "~/sharedStrings";
|
||||
import { modelStats } from "../../modelProviders/modelStats";
|
||||
|
||||
export type CompletionResponse = {
|
||||
output: ChatCompletion | null;
|
||||
statusCode: number;
|
||||
errorMessage: string | null;
|
||||
timeToComplete: number;
|
||||
promptTokens?: number;
|
||||
completionTokens?: number;
|
||||
cost?: number;
|
||||
};
|
||||
|
||||
export async function getOpenAIChatCompletion(
|
||||
payload: CompletionCreateParams,
|
||||
channel?: string,
|
||||
): Promise<CompletionResponse> {
|
||||
// If functions are enabled, disable streaming so that we get the full response with token counts
|
||||
if (payload.functions?.length) payload.stream = false;
|
||||
const start = Date.now();
|
||||
const response = await fetch("https://api.openai.com/v1/chat/completions", {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${env.OPENAI_API_KEY}`,
|
||||
},
|
||||
body: JSON.stringify(payload),
|
||||
});
|
||||
|
||||
const resp: CompletionResponse = {
|
||||
output: null,
|
||||
errorMessage: null,
|
||||
statusCode: response.status,
|
||||
timeToComplete: 0,
|
||||
};
|
||||
|
||||
try {
|
||||
if (payload.stream) {
|
||||
const completion = streamChatCompletion(payload as unknown as CompletionCreateParams);
|
||||
let finalOutput: ChatCompletion | null = null;
|
||||
await (async () => {
|
||||
for await (const partialCompletion of completion) {
|
||||
finalOutput = partialCompletion;
|
||||
wsConnection.emit("message", { channel, payload: partialCompletion });
|
||||
}
|
||||
})().catch((err) => console.error(err));
|
||||
if (finalOutput) {
|
||||
resp.output = finalOutput;
|
||||
resp.timeToComplete = Date.now() - start;
|
||||
}
|
||||
} else {
|
||||
resp.timeToComplete = Date.now() - start;
|
||||
resp.output = await response.json();
|
||||
}
|
||||
|
||||
if (!response.ok) {
|
||||
if (response.status === 429) {
|
||||
resp.errorMessage = rateLimitErrorMessage;
|
||||
} else if (
|
||||
isObject(resp.output) &&
|
||||
"error" in resp.output &&
|
||||
isObject(resp.output.error) &&
|
||||
"message" in resp.output.error
|
||||
) {
|
||||
// If it's an object, try to get the error message
|
||||
resp.errorMessage = resp.output.error.message?.toString() ?? "Unknown error";
|
||||
}
|
||||
}
|
||||
|
||||
if (isObject(resp.output) && "usage" in resp.output) {
|
||||
const usage = resp.output.usage as unknown as ChatCompletion.Usage;
|
||||
resp.promptTokens = usage.prompt_tokens;
|
||||
resp.completionTokens = usage.completion_tokens;
|
||||
} else if (isObject(resp.output) && "choices" in resp.output) {
|
||||
const model = payload.model as unknown as OpenAIChatModel;
|
||||
resp.promptTokens = countOpenAIChatTokens(model, payload.messages);
|
||||
const choices = resp.output.choices as unknown as ChatCompletion.Choice[];
|
||||
const message = choices[0]?.message;
|
||||
if (message) {
|
||||
const messages = [message];
|
||||
resp.completionTokens = countOpenAIChatTokens(model, messages);
|
||||
}
|
||||
}
|
||||
|
||||
const stats = modelStats[resp.output?.model as SupportedModel];
|
||||
if (stats && resp.promptTokens && resp.completionTokens) {
|
||||
resp.cost =
|
||||
resp.promptTokens * stats.promptTokenPrice +
|
||||
resp.completionTokens * stats.completionTokenPrice;
|
||||
}
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
if (response.ok) {
|
||||
resp.errorMessage = "Failed to parse response";
|
||||
}
|
||||
}
|
||||
|
||||
return resp;
|
||||
}
|
||||
@@ -1,64 +1,5 @@
|
||||
import { omit } from "lodash-es";
|
||||
import { env } from "~/env.mjs";
|
||||
|
||||
import OpenAI from "openai";
|
||||
import {
|
||||
type ChatCompletion,
|
||||
type ChatCompletionChunk,
|
||||
type CompletionCreateParams,
|
||||
} from "openai/resources/chat";
|
||||
|
||||
export const openai = new OpenAI({ apiKey: env.OPENAI_API_KEY });
|
||||
|
||||
export const mergeStreamedChunks = (
|
||||
base: ChatCompletion | null,
|
||||
chunk: ChatCompletionChunk,
|
||||
): ChatCompletion => {
|
||||
if (base === null) {
|
||||
return mergeStreamedChunks({ ...chunk, choices: [] }, chunk);
|
||||
}
|
||||
|
||||
const choices = [...base.choices];
|
||||
for (const choice of chunk.choices) {
|
||||
const baseChoice = choices.find((c) => c.index === choice.index);
|
||||
if (baseChoice) {
|
||||
baseChoice.finish_reason = choice.finish_reason ?? baseChoice.finish_reason;
|
||||
baseChoice.message = baseChoice.message ?? { role: "assistant" };
|
||||
|
||||
if (choice.delta?.content)
|
||||
baseChoice.message.content =
|
||||
((baseChoice.message.content as string) ?? "") + (choice.delta.content ?? "");
|
||||
if (choice.delta?.function_call) {
|
||||
const fnCall = baseChoice.message.function_call ?? {};
|
||||
fnCall.name =
|
||||
((fnCall.name as string) ?? "") + ((choice.delta.function_call.name as string) ?? "");
|
||||
fnCall.arguments =
|
||||
((fnCall.arguments as string) ?? "") +
|
||||
((choice.delta.function_call.arguments as string) ?? "");
|
||||
}
|
||||
} else {
|
||||
choices.push({ ...omit(choice, "delta"), message: { role: "assistant", ...choice.delta } });
|
||||
}
|
||||
}
|
||||
|
||||
const merged: ChatCompletion = {
|
||||
...base,
|
||||
choices,
|
||||
};
|
||||
|
||||
return merged;
|
||||
};
|
||||
|
||||
export const streamChatCompletion = async function* (body: CompletionCreateParams) {
|
||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-call
|
||||
const resp = await openai.chat.completions.create({
|
||||
...body,
|
||||
stream: true,
|
||||
});
|
||||
|
||||
let mergedChunks: ChatCompletion | null = null;
|
||||
for await (const part of resp) {
|
||||
mergedChunks = mergeStreamedChunks(mergedChunks, part);
|
||||
yield mergedChunks;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import modelProviders from "~/modelProviders";
|
||||
import modelProviders from "~/modelProviders/modelProviders";
|
||||
import ivm from "isolated-vm";
|
||||
import { isObject, isString } from "lodash-es";
|
||||
import { type JsonObject } from "type-fest";
|
||||
|
||||
@@ -22,7 +22,6 @@ export function SyncAppStore() {
|
||||
const setApi = useAppStore((state) => state.setApi);
|
||||
|
||||
useEffect(() => {
|
||||
console.log("setting api", utils);
|
||||
setApi(utils);
|
||||
}, [utils, setApi]);
|
||||
|
||||
|
||||
@@ -9,7 +9,7 @@ interface GPTTokensMessageItem {
|
||||
}
|
||||
|
||||
export const countOpenAIChatTokens = (
|
||||
model: OpenAIChatModel,
|
||||
model: keyof typeof OpenAIChatModel,
|
||||
messages: ChatCompletion.Choice.Message[],
|
||||
) => {
|
||||
return new GPTTokens({ model, messages: messages as unknown as GPTTokensMessageItem[] })
|
||||
|
||||
@@ -1,13 +1,12 @@
|
||||
import { type ChatCompletion } from "openai/resources/chat";
|
||||
import { useRef, useState, useEffect } from "react";
|
||||
import { io, type Socket } from "socket.io-client";
|
||||
import { env } from "~/env.mjs";
|
||||
|
||||
const url = env.NEXT_PUBLIC_SOCKET_URL;
|
||||
|
||||
export default function useSocket(channel?: string | null) {
|
||||
export default function useSocket<T>(channel?: string | null) {
|
||||
const socketRef = useRef<Socket>();
|
||||
const [message, setMessage] = useState<ChatCompletion | null>(null);
|
||||
const [message, setMessage] = useState<T | null>(null);
|
||||
|
||||
useEffect(() => {
|
||||
if (!channel) return;
|
||||
@@ -21,7 +20,7 @@ export default function useSocket(channel?: string | null) {
|
||||
socketRef.current?.emit("join", channel);
|
||||
|
||||
// Listen for 'message' events
|
||||
socketRef.current?.on("message", (message: ChatCompletion) => {
|
||||
socketRef.current?.on("message", (message: T) => {
|
||||
setMessage(message);
|
||||
});
|
||||
});
|
||||
|
||||
1
src/utils/utils.ts
Normal file
1
src/utils/utils.ts
Normal file
@@ -0,0 +1 @@
|
||||
export const truthyFilter = <T>(x: T | null | undefined): x is T => Boolean(x);
|
||||
Reference in New Issue
Block a user