Compare commits
7 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f6f24332fd | ||
|
|
3895e48fa0 | ||
|
|
407b3a8dca | ||
|
|
5491b153ed | ||
|
|
ac1d105911 | ||
|
|
5808eea048 | ||
|
|
e15f07b7f8 |
@@ -79,7 +79,8 @@
|
||||
"nextjs-routes": "^2.0.1",
|
||||
"nodemailer": "^6.9.4",
|
||||
"openai": "4.0.0-beta.7",
|
||||
"openpipe": "workspace:*",
|
||||
"openpipe": "^0.3.0",
|
||||
"openpipe-dev": "workspace:^",
|
||||
"pg": "^8.11.2",
|
||||
"pluralize": "^8.0.0",
|
||||
"posthog-js": "^1.75.3",
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
import { isArray, isString } from "lodash-es";
|
||||
import { APIError } from "openai";
|
||||
import { type ChatCompletion, type CompletionCreateParams } from "openai/resources/chat";
|
||||
import mergeChunks from "openpipe/src/openai/mergeChunks";
|
||||
import mergeChunks from "openpipe/openai/mergeChunks";
|
||||
import { openai } from "~/server/utils/openai";
|
||||
import { type CompletionResponse } from "../types";
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import fs from "fs";
|
||||
import path from "path";
|
||||
import OpenAI, { type ClientOptions } from "openpipe/src/openai";
|
||||
import OpenAI, { type ClientOptions } from "openpipe/openai";
|
||||
|
||||
import { env } from "~/env.mjs";
|
||||
|
||||
|
||||
70
client-libs/typescript/README.md
Normal file
70
client-libs/typescript/README.md
Normal file
@@ -0,0 +1,70 @@
|
||||
# OpenPipe Node API Library
|
||||
|
||||
[](https://npmjs.org/package/openpipe)
|
||||
|
||||
This library wraps TypeScript or Javascript OpenAI API calls and logs additional data to the configured `OPENPIPE_BASE_URL` for further processing.
|
||||
|
||||
It is fully compatible with OpenAI's sdk and logs both streaming and non-streaming requests and responses.
|
||||
|
||||
<!-- To learn more about using OpenPipe, check out our [Documentation](https://docs.openpipe.ai/docs/api). -->
|
||||
|
||||
## Installation
|
||||
|
||||
```sh
|
||||
npm install --save openpipe
|
||||
# or
|
||||
yarn add openpipe
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
1. Create a project at https://app.openpipe.ai
|
||||
2. Find your project's API key at https://app.openpipe.ai/project/settings
|
||||
3. Configure the OpenPipe client as shown below.
|
||||
|
||||
```js
|
||||
// import OpenAI from 'openai'
|
||||
import OpenAI from "openpipe/openai";
|
||||
|
||||
// Fully compatible with original OpenAI initialization
|
||||
const openai = new OpenAI({
|
||||
apiKey: "my api key", // defaults to process.env["OPENAI_API_KEY"]
|
||||
// openpipe key is optional
|
||||
openpipe: {
|
||||
apiKey: "my api key", // defaults to process.env["OPENPIPE_API_KEY"]
|
||||
baseUrl: "my url", // defaults to process.env["OPENPIPE_BASE_URL"] or https://app.openpipe.ai/api/v1 if not set
|
||||
},
|
||||
});
|
||||
|
||||
async function main() {
|
||||
// Allows optional openpipe object
|
||||
const completion = await openai.chat.completions.create({
|
||||
messages: [{ role: "user", content: "Say this is a test" }],
|
||||
model: "gpt-3.5-turbo",
|
||||
// optional
|
||||
openpipe: {
|
||||
// Add custom searchable tags
|
||||
tags: {
|
||||
prompt_id: "getCompletion",
|
||||
any_key: "any_value",
|
||||
},
|
||||
},
|
||||
});
|
||||
|
||||
console.log(completion.choices);
|
||||
}
|
||||
|
||||
main();
|
||||
```
|
||||
|
||||
## FAQ
|
||||
|
||||
<i>How do I report calls to my self-hosted instance?</i>
|
||||
|
||||
Start an instance by following the instructions on [Running Locally](https://github.com/OpenPipe/OpenPipe#running-locally). Once it's running, point your `OPENPIPE_BASE_URL` to your self-hosted instance.
|
||||
|
||||
<i>What if my `OPENPIPE_BASE_URL` is misconfigured or my instance goes down? Will my OpenAI calls stop working?</i>
|
||||
|
||||
Your OpenAI calls will continue to function as expected no matter what. The sdk handles logging errors gracefully without affecting OpenAI inference.
|
||||
|
||||
See the [GitHub repo](https://github.com/OpenPipe/OpenPipe) for more details.
|
||||
27
client-libs/typescript/build.sh
Executable file
27
client-libs/typescript/build.sh
Executable file
@@ -0,0 +1,27 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Adapted from https://github.com/openai/openai-node/blob/master/build
|
||||
|
||||
set -exuo pipefail
|
||||
|
||||
rm -rf dist /tmp/openpipe-build-dist
|
||||
|
||||
mkdir /tmp/openpipe-build-dist
|
||||
|
||||
cp -rp * /tmp/openpipe-build-dist
|
||||
|
||||
# Rename package name in package.json
|
||||
python3 -c "
|
||||
import json
|
||||
with open('/tmp/openpipe-build-dist/package.json', 'r') as f:
|
||||
data = json.load(f)
|
||||
data['name'] = 'openpipe'
|
||||
with open('/tmp/openpipe-build-dist/package.json', 'w') as f:
|
||||
json.dump(data, f, indent=4)
|
||||
"
|
||||
|
||||
rm -rf /tmp/openpipe-build-dist/node_modules
|
||||
mv /tmp/openpipe-build-dist dist
|
||||
|
||||
# build to .js files
|
||||
(cd dist && npm exec tsc -- --noEmit false)
|
||||
@@ -1,3 +1 @@
|
||||
// main.ts or index.ts at the root level
|
||||
export * as OpenAI from "./src/openai";
|
||||
export * as OpenAILegacy from "./src/openai-legacy";
|
||||
export * as openai from "./openai";
|
||||
|
||||
@@ -80,6 +80,7 @@ test("bad call streaming", async () => {
|
||||
stream: true,
|
||||
});
|
||||
} catch (e) {
|
||||
// @ts-expect-error need to check for error type
|
||||
await e.openpipe.reportingFinished;
|
||||
const lastLogged = await lastLoggedCall();
|
||||
expect(lastLogged?.modelResponse?.errorMessage).toEqual(
|
||||
@@ -96,7 +97,9 @@ test("bad call", async () => {
|
||||
messages: [{ role: "system", content: "count to 10" }],
|
||||
});
|
||||
} catch (e) {
|
||||
// @ts-expect-error need to check for error type
|
||||
assert("openpipe" in e);
|
||||
// @ts-expect-error need to check for error type
|
||||
await e.openpipe.reportingFinished;
|
||||
const lastLogged = await lastLoggedCall();
|
||||
expect(lastLogged?.modelResponse?.errorMessage).toEqual(
|
||||
@@ -120,7 +123,8 @@ test("caching", async () => {
|
||||
|
||||
await completion.openpipe.reportingFinished;
|
||||
const firstLogged = await lastLoggedCall();
|
||||
expect(completion.choices[0].message.content).toEqual(
|
||||
|
||||
expect(completion.choices[0]?.message.content).toEqual(
|
||||
firstLogged?.modelResponse?.respPayload.choices[0].message.content,
|
||||
);
|
||||
|
||||
@@ -1,14 +1,17 @@
|
||||
{
|
||||
"name": "openpipe",
|
||||
"version": "0.1.0",
|
||||
"name": "openpipe-dev",
|
||||
"version": "0.3.3",
|
||||
"type": "module",
|
||||
"description": "Metrics and auto-evaluation for LLM calls",
|
||||
"scripts": {
|
||||
"build": "tsc",
|
||||
"build": "./build.sh",
|
||||
"test": "vitest"
|
||||
},
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
"main": "./index.ts",
|
||||
"publishConfig": {
|
||||
"access": "public",
|
||||
"main": "./index.js"
|
||||
},
|
||||
"keywords": [],
|
||||
"author": "",
|
||||
"license": "Apache-2.0",
|
||||
|
||||
9
client-libs/typescript/publish.sh
Executable file
9
client-libs/typescript/publish.sh
Executable file
@@ -0,0 +1,9 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Adapted from https://github.com/openai/openai-node/blob/master/build
|
||||
|
||||
set -exuo pipefail
|
||||
|
||||
./build.sh
|
||||
|
||||
(cd dist && pnpm publish --access public)
|
||||
@@ -1,4 +1,5 @@
|
||||
import pkg from "../package.json";
|
||||
import pkg from "./package.json";
|
||||
|
||||
import { DefaultService } from "./codegen";
|
||||
|
||||
export type OpenPipeConfig = {
|
||||
@@ -1,85 +0,0 @@
|
||||
import * as openPipeClient from "../codegen";
|
||||
import * as openai from "openai-legacy";
|
||||
import { version } from "../../package.json";
|
||||
|
||||
// Anything we don't override we want to pass through to openai directly
|
||||
export * as openAILegacy from "openai-legacy";
|
||||
|
||||
type OPConfigurationParameters = {
|
||||
apiKey?: string;
|
||||
basePath?: string;
|
||||
};
|
||||
|
||||
export class Configuration extends openai.Configuration {
|
||||
public qkConfig?: openPipeClient.Configuration;
|
||||
|
||||
constructor(
|
||||
config: openai.ConfigurationParameters & {
|
||||
opParameters?: OPConfigurationParameters;
|
||||
}
|
||||
) {
|
||||
super(config);
|
||||
if (config.opParameters) {
|
||||
this.qkConfig = new openPipeClient.Configuration(config.opParameters);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type CreateChatCompletion = InstanceType<typeof openai.OpenAIApi>["createChatCompletion"];
|
||||
|
||||
export class OpenAIApi extends openai.OpenAIApi {
|
||||
public openPipeApi?: openPipeClient.DefaultApi;
|
||||
|
||||
constructor(config: Configuration) {
|
||||
super(config);
|
||||
if (config.qkConfig) {
|
||||
this.openPipeApi = new openPipeClient.DefaultApi(config.qkConfig);
|
||||
}
|
||||
}
|
||||
|
||||
public async createChatCompletion(
|
||||
createChatCompletionRequest: Parameters<CreateChatCompletion>[0],
|
||||
options?: Parameters<CreateChatCompletion>[1]
|
||||
): ReturnType<CreateChatCompletion> {
|
||||
const requestedAt = Date.now();
|
||||
let resp: Awaited<ReturnType<CreateChatCompletion>> | null = null;
|
||||
let respPayload: openai.CreateChatCompletionResponse | null = null;
|
||||
let statusCode: number | undefined = undefined;
|
||||
let errorMessage: string | undefined;
|
||||
try {
|
||||
resp = await super.createChatCompletion(createChatCompletionRequest, options);
|
||||
respPayload = resp.data;
|
||||
statusCode = resp.status;
|
||||
} catch (err) {
|
||||
console.error("Error in createChatCompletion");
|
||||
if ("isAxiosError" in err && err.isAxiosError) {
|
||||
errorMessage = err.response?.data?.error?.message;
|
||||
respPayload = err.response?.data;
|
||||
statusCode = err.response?.status;
|
||||
} else if ("message" in err) {
|
||||
errorMessage = err.message.toString();
|
||||
}
|
||||
throw err;
|
||||
} finally {
|
||||
this.openPipeApi
|
||||
?.externalApiReport({
|
||||
requestedAt,
|
||||
receivedAt: Date.now(),
|
||||
reqPayload: createChatCompletionRequest,
|
||||
respPayload: respPayload,
|
||||
statusCode: statusCode,
|
||||
errorMessage,
|
||||
tags: {
|
||||
client: "openai-js",
|
||||
clientVersion: version,
|
||||
},
|
||||
})
|
||||
.catch((err) => {
|
||||
console.error("Error reporting to OP", err);
|
||||
});
|
||||
}
|
||||
|
||||
console.log("done");
|
||||
return resp;
|
||||
}
|
||||
}
|
||||
@@ -14,9 +14,12 @@
|
||||
"isolatedModules": true,
|
||||
"incremental": true,
|
||||
"noUncheckedIndexedAccess": true,
|
||||
"baseUrl": ".",
|
||||
"outDir": "dist"
|
||||
"noEmit": true,
|
||||
"sourceMap": true,
|
||||
"declaration": true,
|
||||
"declarationMap": true,
|
||||
"rootDir": "."
|
||||
},
|
||||
"include": ["src/**/*.ts"],
|
||||
"include": ["**/*.ts"],
|
||||
"exclude": ["node_modules"]
|
||||
}
|
||||
|
||||
@@ -1,123 +0,0 @@
|
||||
# %% [markdown]
|
||||
# I'm pretty happy with my model's accuracy relative to GPT-4. How does it compare cost-wise?
|
||||
#
|
||||
# I'll really push this to its limits -- let's see how quickly our poor model can classify the [full 2-million-recipe dataset](https://huggingface.co/datasets/corbt/all-recipes) 😈.
|
||||
|
||||
# %%
|
||||
|
||||
# %%
|
||||
from datasets import load_dataset
|
||||
|
||||
all_recipes = load_dataset("corbt/all-recipes")["train"]["input"]
|
||||
|
||||
print(f"Number of recipes: {len(all_recipes):,}")
|
||||
|
||||
|
||||
# %%
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
llm = LLM(model="./models/run1/merged", max_num_batched_tokens=4096)
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
# 120 should be fine for the work we're doing here.
|
||||
max_tokens=120,
|
||||
# This is a deterministic task so temperature=0 is best.
|
||||
temperature=0,
|
||||
)
|
||||
|
||||
|
||||
# %%
|
||||
import os
|
||||
import time
|
||||
import json
|
||||
|
||||
BATCH_SIZE = 10000
|
||||
start_time = time.time()
|
||||
print(f"Start time: {start_time}")
|
||||
|
||||
for i in range(0, len(all_recipes), BATCH_SIZE):
|
||||
# File name for the current batch
|
||||
file_name = f"./data/benchmark_batch_{int(i/BATCH_SIZE)}.txt"
|
||||
|
||||
# Check if the file already exists; if so, skip to the next batch
|
||||
if os.path.exists(file_name):
|
||||
print(f"File {file_name} exists, skipping recipes {i:,} to {i+BATCH_SIZE:,}...")
|
||||
continue
|
||||
|
||||
print(f"Processing recipes {i:,} to {i+BATCH_SIZE:,}...")
|
||||
outputs = llm.generate(
|
||||
all_recipes[i : i + BATCH_SIZE], sampling_params=sampling_params
|
||||
)
|
||||
|
||||
outputs = [o.outputs[0].text for o in outputs]
|
||||
|
||||
# Write the generated outputs to the file as a JSON list
|
||||
json.dump(outputs, open(file_name, "w"))
|
||||
|
||||
end_time = time.time()
|
||||
print(f"End time: {end_time}")
|
||||
print(f"Total hours: {((end_time - start_time) / 3600):.2f}")
|
||||
|
||||
|
||||
# %% [markdown]
|
||||
# Nice! I've processed all 2,147,248 recipes in under 17 hours. Let's do a cost comparison with GPT-3.5 and GPT-4. I'll use the GPT-4 latency/cost numbers based on the 5000 samples used to generate our model's training data.
|
||||
|
||||
# %%
|
||||
import pandas as pd
|
||||
|
||||
# I used an on-demand Nvidia L40 on RunPod for this, at an hourly cost of $1.14.
|
||||
finetuned_hourly_cost = 1.14
|
||||
|
||||
finetuned_total_hours = 17
|
||||
|
||||
finetuned_avg_cost = finetuned_hourly_cost * finetuned_total_hours / len(all_recipes)
|
||||
|
||||
# The average input and output tokens calculated by OpenAI, based on the 5000 recipes I sent them
|
||||
avg_input_tokens = 276
|
||||
avg_output_tokens = 42
|
||||
|
||||
# Token pricing from https://openai.com/pricing
|
||||
gpt_4_avg_cost = avg_input_tokens * 0.03 / 1000 + avg_output_tokens * 0.06 / 1000
|
||||
|
||||
gpt_35_avg_cost = avg_input_tokens * 0.0015 / 1000 + avg_output_tokens * 0.0016 / 1000
|
||||
|
||||
gpt_35_finetuned_avg_cost = (
|
||||
avg_input_tokens * 0.012 / 1000 + avg_output_tokens * 0.016 / 1000 + 0.06 / 1000
|
||||
)
|
||||
|
||||
# Multiply the number of recipes
|
||||
# gpt_4_cost = len(all_recipes) * gpt_4_avg_cost
|
||||
# gpt_35_cost = len(all_recipes) * gpt_35_avg_cost
|
||||
# gpt_35_finetuned_cost = len(all_recipes) * gpt_35_finetuned_avg_cost
|
||||
|
||||
# Let's put this in a dataframe for easier comparison.
|
||||
|
||||
costs = pd.DataFrame(
|
||||
{
|
||||
"Model": [
|
||||
"Llama 2 7B (finetuned)",
|
||||
"GPT-3.5",
|
||||
"GPT-3.5 (finetuned)",
|
||||
"GPT-4",
|
||||
],
|
||||
"Cost to Classify One Recipe": [
|
||||
finetuned_avg_cost,
|
||||
gpt_35_avg_cost,
|
||||
gpt_35_finetuned_avg_cost,
|
||||
gpt_4_avg_cost,
|
||||
],
|
||||
}
|
||||
)
|
||||
|
||||
costs["Cost to Classify Entire Dataset"] = (
|
||||
costs["Cost to Classify One Recipe"] * len(all_recipes)
|
||||
).map(lambda x: f"{x:,.2f}")
|
||||
|
||||
|
||||
costs
|
||||
|
||||
|
||||
# %% [markdown]
|
||||
# ...and just for fun, let's figure out how many recipes my pescatarian basement-dwelling brother can make! 😂
|
||||
|
||||
# %%
|
||||
18
pnpm-lock.yaml
generated
18
pnpm-lock.yaml
generated
@@ -174,7 +174,10 @@ importers:
|
||||
specifier: 4.0.0-beta.7
|
||||
version: 4.0.0-beta.7(encoding@0.1.13)
|
||||
openpipe:
|
||||
specifier: workspace:*
|
||||
specifier: ^0.3.0
|
||||
version: 0.3.0
|
||||
openpipe-dev:
|
||||
specifier: workspace:^
|
||||
version: link:../client-libs/typescript
|
||||
pg:
|
||||
specifier: ^8.11.2
|
||||
@@ -7247,6 +7250,19 @@ packages:
|
||||
oidc-token-hash: 5.0.3
|
||||
dev: false
|
||||
|
||||
/openpipe@0.3.0:
|
||||
resolution: {integrity: sha512-0hhk3Aq0kUxzvNb36vm9vssxMHYZvgJOg5wKeepRhVthW4ygBWftHZjR4PHyOtvjcRmnJ/v4h8xd/IINu5ypnQ==}
|
||||
dependencies:
|
||||
encoding: 0.1.13
|
||||
form-data: 4.0.0
|
||||
lodash-es: 4.17.21
|
||||
node-fetch: 2.6.12(encoding@0.1.13)
|
||||
openai-beta: /openai@4.0.0-beta.7(encoding@0.1.13)
|
||||
openai-legacy: /openai@3.3.0
|
||||
transitivePeerDependencies:
|
||||
- debug
|
||||
dev: false
|
||||
|
||||
/optionator@0.9.3:
|
||||
resolution: {integrity: sha512-JjCoypp+jKn1ttEFExxhetCKeJt9zhAgAve5FXHixTvFDW/5aEktX9bufBKLRRMdU7bNtpLfcGu94B3cdEJgjg==}
|
||||
engines: {node: '>= 0.8.0'}
|
||||
|
||||
Reference in New Issue
Block a user