# OpenPipe
OpenPipe is a flexible playground for comparing and optimizing LLM prompts. It lets you quickly generate, test and compare candidate prompts, and can automatically [translate](#-translate-between-model-apis) those prompts between models.
You can use our hosted version of OpenPipe at https://openpipe.ai. You can also clone this repository and [run it locally](#running-locally).
## Sample Experiments
These are simple experiments users have created that show how OpenPipe works. Feel free to fork them and start experimenting yourself.
- [Twitter Sentiment Analysis](https://app.openpipe.ai/experiments/62c20a73-2012-4a64-973c-4b665ad46a57)
- [Reddit User Needs](https://app.openpipe.ai/experiments/22222222-2222-2222-2222-222222222222)
- [OpenAI Function Calls](https://app.openpipe.ai/experiments/2ebbdcb3-ed51-456e-87dc-91f72eaf3e2b)
- [Activity Classification](https://app.openpipe.ai/experiments/3950940f-ab6b-4b74-841d-7e9dbc4e4ff8)
## Supported Models
- All models available through the OpenAI [chat completion API](https://platform.openai.com/docs/guides/gpt/chat-completions-api)
- Llama2 [7b chat](https://replicate.com/a16z-infra/llama7b-v2-chat), [13b chat](https://replicate.com/a16z-infra/llama13b-v2-chat), [70b chat](https://replicate.com/replicate/llama70b-v2-chat).
- Anthropic's [Claude 1 Instant](https://www.anthropic.com/index/introducing-claude) and [Claude 2](https://www.anthropic.com/index/claude-2)
## Features
### ๐ Visualize Responses
Inspect prompt completions side-by-side.
### ๐งช Bulk-Test
OpenPipe lets you _template_ a prompt. Use the templating feature to run the prompts you're testing against many potential inputs for broad coverage of your problem space.
### ๐ Translate between Model APIs
Write your prompt in one format and automatically convert it to work with any other model.
### ๐ ๏ธ Refine Your Prompts Automatically
Use a growing database of best-practice refinements to improve your prompts automatically.
### ๐ช Auto-generate Test Scenarios
OpenPipe includes a tool to generate new test scenarios based on your existing prompts and scenarios. Just click "Autogenerate Scenario" to try it out!
## Running Locally
1. Install [Postgresql](https://www.postgresql.org/download/).
2. Install [NodeJS 20](https://nodejs.org/en/download/current) (earlier versions will very likely work but aren't tested).
3. Install `pnpm`: `npm i -g pnpm`
4. Clone this repository: `git clone https://github.com/openpipe/openpipe`
5. Install the dependencies: `cd openpipe && pnpm install`
6. Create a `.env` file (`cp .env.example .env`) and enter your `OPENAI_API_KEY`.
7. Update `DATABASE_URL` if necessary to point to your Postgres instance and run `pnpm prisma migrate dev` to create the database.
8. Create a [GitHub OAuth App](https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app) and update the `GITHUB_CLIENT_ID` and `GITHUB_CLIENT_SECRET` values. (Note: a PR to make auth optional when running locally would be a great contribution!)
9. Start the app: `pnpm dev`.
10. Navigate to [http://localhost:3000](http://localhost:3000)
## Testing Locally
1. Copy your `.env` file to `.env.test`.
2. Update the `DATABASE_URL` to have a different database name than your development one
3. Run `DATABASE_URL=[your new datatase url] pnpm prisma migrate dev --skip-seed --skip-generate`
4. Run `pnpm test`