# This file is used by the training script in train.ipynb. You can read more about # the format and see more examples at https://github.com/OpenAccess-AI-Collective/axolotl. # One of the parameters you might want to play around with is `num_epochs`: if you have a # smaller dataset size, making that large can have good results. base_model: meta-llama/Llama-2-7b-hf base_model_config: meta-llama/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: ./data/train.jsonl type: alpaca_instruct.load_no_prompt dataset_prepared_path: ./data/last_run_prepared val_set_size: 0.05 output_dir: ./models/run1 sequence_len: 4096 sample_packing: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: # This will report stats from your training run to https://wandb.ai/. If you don't want to create a wandb account you can comment this section out. wandb_project: classify-recipes wandb_entity: wandb_watch: wandb_run_id: run1 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 5 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: 20 save_steps: 60 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: ""