Files
OpenPipe-llm/prisma/seedAgiEval.ts
arcticfly 1fb428ef4a Add scenario editing modal, twitter sentiment seeding (#101)
* testing agi-eval benchmark

* Add scenario modal editor

* Add initial values to ScenarioEditorModal

* Add seedTwitterSentiment.ts

---------

Co-authored-by: Kyle Corbitt <kyle@corbt.com>
2023-08-01 01:26:43 -07:00

128 lines
3.2 KiB
TypeScript

import { prisma } from "~/server/db";
import { generateNewCell } from "~/server/utils/generateNewCell";
import dedent from "dedent";
import { execSync } from "child_process";
import fs from "fs";
const defaultId = "11111111-1111-1111-1111-111111111112";
await prisma.organization.deleteMany({
where: { id: defaultId },
});
// If there's an existing org, just seed into it
const org =
(await prisma.organization.findFirst({})) ??
(await prisma.organization.create({
data: { id: defaultId },
}));
// Clone the repo from git@github.com:microsoft/AGIEval.git into a tmp dir if it doesn't exist
const tmpDir = "/tmp/agi-eval";
if (!fs.existsSync(tmpDir)) {
execSync(`git clone git@github.com:microsoft/AGIEval.git ${tmpDir}`);
}
const datasets = [
"sat-en",
"sat-math",
"lsat-rc",
"lsat-ar",
"aqua-rat",
"logiqa-en",
"lsat-lr",
"math",
];
type Scenario = {
passage: string | null;
question: string;
options: string[] | null;
label: string;
};
for (const dataset of datasets) {
const experimentName = `AGI-Eval: ${dataset}`;
const oldExperiment = await prisma.experiment.findFirst({
where: {
label: experimentName,
organizationId: org.id,
},
});
if (oldExperiment) {
await prisma.experiment.deleteMany({
where: { id: oldExperiment.id },
});
}
const experiment = await prisma.experiment.create({
data: {
id: oldExperiment?.id ?? undefined,
label: experimentName,
organizationId: org.id,
},
});
const scenarios: Scenario[] = fs
.readFileSync(`${tmpDir}/data/v1/${dataset}.jsonl`, "utf8")
.split("\n")
.filter((line) => line.length > 0)
.map((line) => JSON.parse(line) as Scenario);
console.log("scenarios", scenarios.length);
await prisma.testScenario.createMany({
data: scenarios.slice(0, 30).map((scenario, i) => ({
experimentId: experiment.id,
sortIndex: i,
variableValues: {
passage: scenario.passage,
question: scenario.question,
options: scenario.options?.join("\n"),
label: scenario.label,
},
})),
});
await prisma.templateVariable.createMany({
data: ["passage", "question", "options", "label"].map((label) => ({
experimentId: experiment.id,
label,
})),
});
await prisma.promptVariant.createMany({
data: [
{
experimentId: experiment.id,
label: "Prompt Variant 1",
sortIndex: 0,
model: "gpt-3.5-turbo-0613",
modelProvider: "openai/ChatCompletion",
constructFnVersion: 1,
constructFn: dedent`
definePrompt("openai/ChatCompletion", {
model: "gpt-3.5-turbo-0613",
messages: [
{
role: "user",
content: \`Passage: ${"$"}{scenario.passage}\n\nQuestion: ${"$"}{scenario.question}\n\nOptions: ${"$"}{scenario.options}\n\n Respond with just the letter of the best option in the format Answer: (A).\`
}
],
temperature: 0,
})`,
},
],
});
await prisma.evaluation.createMany({
data: [
{
experimentId: experiment.id,
label: "Eval",
evalType: "CONTAINS",
value: "Answer: ({{label}})",
},
],
});
}