Files
OpenPipe-llm/prisma/seedTwitterSentiment.ts
Kyle Corbitt e10589abff Rename constructFn to promptConstructor
It's a clearer name. Also reorganize the filesystem so all the promptConstructor related files are colocated.
2023-08-04 23:09:39 -07:00

115 lines
2.8 KiB
TypeScript

import { prisma } from "~/server/db";
import dedent from "dedent";
import fs from "fs";
import { parse } from "csv-parse/sync";
import { promptConstructorVersion } from "~/promptConstructor/version";
const defaultId = "11111111-1111-1111-1111-111111111112";
await prisma.organization.deleteMany({
where: { id: defaultId },
});
// If there's an existing org, just seed into it
const org =
(await prisma.organization.findFirst({})) ??
(await prisma.organization.create({
data: { id: defaultId },
}));
type Scenario = {
text: string;
sentiment: string;
emotion: string;
};
const experimentName = `Twitter Sentiment Analysis`;
const oldExperiment = await prisma.experiment.findFirst({
where: {
label: experimentName,
organizationId: org.id,
},
});
if (oldExperiment) {
await prisma.experiment.deleteMany({
where: { id: oldExperiment.id },
});
}
const experiment = await prisma.experiment.create({
data: {
id: oldExperiment?.id ?? undefined,
label: experimentName,
organizationId: org.id,
},
});
const content = fs.readFileSync("./prisma/datasets/validated_tweets.csv", "utf8");
// eslint-disable-next-line @typescript-eslint/no-explicit-any
const records: any[] = parse(content, { delimiter: ",", from_line: 2 });
console.log("records", records);
const scenarios: Scenario[] = records.map((row) => ({
text: row[0],
sentiment: row[1],
emotion: row[2],
}));
console.log("scenarios", scenarios.length);
await prisma.testScenario.createMany({
data: scenarios.slice(0, 30).map((scenario, i) => ({
experimentId: experiment.id,
sortIndex: i,
variableValues: {
text: scenario.text,
sentiment: scenario.sentiment,
emotion: scenario.emotion,
},
})),
});
await prisma.templateVariable.createMany({
data: ["text", "sentiment", "emotion"].map((label) => ({
experimentId: experiment.id,
label,
})),
});
await prisma.promptVariant.createMany({
data: [
{
experimentId: experiment.id,
label: "Prompt Variant 1",
sortIndex: 0,
model: "gpt-3.5-turbo-0613",
modelProvider: "openai/ChatCompletion",
promptConstructorVersion,
promptConstructor: dedent`
definePrompt("openai/ChatCompletion", {
model: "gpt-3.5-turbo-0613",
messages: [
{
role: "user",
content: \`Text: ${"$"}{scenario.text}\n\nRespond with the sentiment (negative|neutral|positive) and emotion (optimism|joy|anger|sadness) of the tweet in this format: "answer: <sentiment>-<emotion>".\`
}
],
temperature: 0,
})`,
},
],
});
await prisma.evaluation.createMany({
data: [
{
experimentId: experiment.id,
label: "Eval",
evalType: "CONTAINS",
value: "answer: {{sentiment}}-{{emotion}}",
},
],
});