Files
OpenPipe-llm/examples/classify-recipes/benchmark-tmp.py
Kyle Corbitt 40638a7848 more work
2023-08-24 23:49:44 +00:00

124 lines
3.5 KiB
Python

# %% [markdown]
# I'm pretty happy with my model's accuracy relative to GPT-4. How does it compare cost-wise?
#
# I'll really push this to its limits -- let's see how quickly our poor model can classify the [full 2-million-recipe dataset](https://huggingface.co/datasets/corbt/all-recipes) 😈.
# %%
# %%
from datasets import load_dataset
all_recipes = load_dataset("corbt/all-recipes")["train"]["input"]
print(f"Number of recipes: {len(all_recipes):,}")
# %%
from vllm import LLM, SamplingParams
llm = LLM(model="./models/run1/merged", max_num_batched_tokens=4096)
sampling_params = SamplingParams(
# 120 should be fine for the work we're doing here.
max_tokens=120,
# This is a deterministic task so temperature=0 is best.
temperature=0,
)
# %%
import os
import time
import json
BATCH_SIZE = 10000
start_time = time.time()
print(f"Start time: {start_time}")
for i in range(0, len(all_recipes), BATCH_SIZE):
# File name for the current batch
file_name = f"./data/benchmark_batch_{int(i/BATCH_SIZE)}.txt"
# Check if the file already exists; if so, skip to the next batch
if os.path.exists(file_name):
print(f"File {file_name} exists, skipping recipes {i:,} to {i+BATCH_SIZE:,}...")
continue
print(f"Processing recipes {i:,} to {i+BATCH_SIZE:,}...")
outputs = llm.generate(
all_recipes[i : i + BATCH_SIZE], sampling_params=sampling_params
)
outputs = [o.outputs[0].text for o in outputs]
# Write the generated outputs to the file as a JSON list
json.dump(outputs, open(file_name, "w"))
end_time = time.time()
print(f"End time: {end_time}")
print(f"Total hours: {((end_time - start_time) / 3600):.2f}")
# %% [markdown]
# Nice! I've processed all 2,147,248 recipes in under 17 hours. Let's do a cost comparison with GPT-3.5 and GPT-4. I'll use the GPT-4 latency/cost numbers based on the 5000 samples used to generate our model's training data.
# %%
import pandas as pd
# I used an on-demand Nvidia L40 on RunPod for this, at an hourly cost of $1.14.
finetuned_hourly_cost = 1.14
finetuned_total_hours = 17
finetuned_avg_cost = finetuned_hourly_cost * finetuned_total_hours / len(all_recipes)
# The average input and output tokens calculated by OpenAI, based on the 5000 recipes I sent them
avg_input_tokens = 276
avg_output_tokens = 42
# Token pricing from https://openai.com/pricing
gpt_4_avg_cost = avg_input_tokens * 0.03 / 1000 + avg_output_tokens * 0.06 / 1000
gpt_35_avg_cost = avg_input_tokens * 0.0015 / 1000 + avg_output_tokens * 0.0016 / 1000
gpt_35_finetuned_avg_cost = (
avg_input_tokens * 0.012 / 1000 + avg_output_tokens * 0.016 / 1000 + 0.06 / 1000
)
# Multiply the number of recipes
# gpt_4_cost = len(all_recipes) * gpt_4_avg_cost
# gpt_35_cost = len(all_recipes) * gpt_35_avg_cost
# gpt_35_finetuned_cost = len(all_recipes) * gpt_35_finetuned_avg_cost
# Let's put this in a dataframe for easier comparison.
costs = pd.DataFrame(
{
"Model": [
"Llama 2 7B (finetuned)",
"GPT-3.5",
"GPT-3.5 (finetuned)",
"GPT-4",
],
"Cost to Classify One Recipe": [
finetuned_avg_cost,
gpt_35_avg_cost,
gpt_35_finetuned_avg_cost,
gpt_4_avg_cost,
],
}
)
costs["Cost to Classify Entire Dataset"] = (
costs["Cost to Classify One Recipe"] * len(all_recipes)
).map(lambda x: f"{x:,.2f}")
costs
# %% [markdown]
# ...and just for fun, let's figure out how many recipes my pescatarian basement-dwelling brother can make! 😂
# %%