updated docs

This commit is contained in:
robertmartin8
2020-04-10 11:08:15 +08:00
parent 85f83ac6f8
commit 31684f211f
3 changed files with 9 additions and 4 deletions

View File

@@ -45,6 +45,11 @@ have any other feature requests, please raise them using GitHub
Fixed minor issues in CLA: weight bound bug, ``efficient_frontier`` needed weights to be called, ``set_weights`` not needed.
1.0.2
-----
Fixed small but important bug where passing ``expected_returns=None`` fails. According to the docs, users
should be able to only pass covariance if they want to only optimise min volatility.
0.5.0
=====

View File

@@ -351,8 +351,8 @@ def portfolio_performance(
After optimising, calculate (and optionally print) the performance of the optimal
portfolio. Currently calculates expected return, volatility, and the Sharpe ratio.
:param expected_returns: expected returns for each asset. Set to None if
optimising for volatility only.
:param expected_returns: expected returns for each asset. Can be None if
optimising for volatility only (but not recommended).
:type expected_returns: np.ndarray or pd.Series
:param cov_matrix: covariance of returns for each asset
:type cov_matrix: np.array or pd.DataFrame

View File

@@ -55,8 +55,8 @@ class EfficientFrontier(base_optimizer.BaseConvexOptimizer):
def __init__(self, expected_returns, cov_matrix, weight_bounds=(0, 1), gamma=0):
"""
:param expected_returns: expected returns for each asset. Set to None if
optimising for volatility only.
:param expected_returns: expected returns for each asset. Can be None if
optimising for volatility only (but not recommended).
:type expected_returns: pd.Series, list, np.ndarray
:param cov_matrix: covariance of returns for each asset
:type cov_matrix: pd.DataFrame or np.array