mirror of
https://github.com/robertmartin8/PyPortfolioOpt.git
synced 2022-11-27 18:02:41 +03:00
updated docs
This commit is contained in:
@@ -45,6 +45,11 @@ have any other feature requests, please raise them using GitHub
|
||||
|
||||
Fixed minor issues in CLA: weight bound bug, ``efficient_frontier`` needed weights to be called, ``set_weights`` not needed.
|
||||
|
||||
1.0.2
|
||||
-----
|
||||
|
||||
Fixed small but important bug where passing ``expected_returns=None`` fails. According to the docs, users
|
||||
should be able to only pass covariance if they want to only optimise min volatility.
|
||||
|
||||
0.5.0
|
||||
=====
|
||||
|
||||
@@ -351,8 +351,8 @@ def portfolio_performance(
|
||||
After optimising, calculate (and optionally print) the performance of the optimal
|
||||
portfolio. Currently calculates expected return, volatility, and the Sharpe ratio.
|
||||
|
||||
:param expected_returns: expected returns for each asset. Set to None if
|
||||
optimising for volatility only.
|
||||
:param expected_returns: expected returns for each asset. Can be None if
|
||||
optimising for volatility only (but not recommended).
|
||||
:type expected_returns: np.ndarray or pd.Series
|
||||
:param cov_matrix: covariance of returns for each asset
|
||||
:type cov_matrix: np.array or pd.DataFrame
|
||||
|
||||
@@ -55,8 +55,8 @@ class EfficientFrontier(base_optimizer.BaseConvexOptimizer):
|
||||
|
||||
def __init__(self, expected_returns, cov_matrix, weight_bounds=(0, 1), gamma=0):
|
||||
"""
|
||||
:param expected_returns: expected returns for each asset. Set to None if
|
||||
optimising for volatility only.
|
||||
:param expected_returns: expected returns for each asset. Can be None if
|
||||
optimising for volatility only (but not recommended).
|
||||
:type expected_returns: pd.Series, list, np.ndarray
|
||||
:param cov_matrix: covariance of returns for each asset
|
||||
:type cov_matrix: pd.DataFrame or np.array
|
||||
|
||||
Reference in New Issue
Block a user