""" The ``base_optimizer`` module houses the parent classes ``BaseOptimizer`` and ``BaseScipyOptimizer``, from which all optimisers will inherit. The later is for optimisers that use the scipy solver. Additionally, we define a general utility function ``portfolio_performance`` to evaluate return and risk for a given set of portfolio weights. """ import numpy as np import pandas as pd from . import objective_functions class BaseOptimizer: def __init__(self, n_assets, tickers=None): """ :param n_assets: number of assets :type n_assets: int :param tickers: name of assets :type tickers: list """ self.n_assets = n_assets if tickers is None: self.tickers = list(range(n_assets)) else: self.tickers = tickers # Outputs self.weights = None def set_weights(self, weights): """ Utility function to set weights. :param weights: {ticker: weight} dictionary :type weights: dict """ if self.weights is None: self.weights = [0] * self.n_assets for i, ticker in enumerate(self.tickers): if ticker in weights: self.weights[i] = weights[ticker] def clean_weights(self, cutoff=1e-4, rounding=5): """ Helper method to clean the raw weights, setting any weights whose absolute values are below the cutoff to zero, and rounding the rest. :param cutoff: the lower bound, defaults to 1e-4 :type cutoff: float, optional :param rounding: number of decimal places to round the weights, defaults to 5. Set to None if rounding is not desired. :type rounding: int, optional :return: asset weights :rtype: dict """ if not isinstance(rounding, int) or rounding < 1: raise ValueError("rounding must be a positive integer") clean_weights = self.weights.copy() clean_weights[np.abs(clean_weights) < cutoff] = 0 if rounding is not None: clean_weights = np.round(clean_weights, rounding) return dict(zip(self.tickers, clean_weights)) class BaseScipyOptimizer(BaseOptimizer): def __init__(self, n_assets, tickers=None, weight_bounds=(0, 1)): """ :param weight_bounds: minimum and maximum weight of an asset, defaults to (0, 1). Must be changed to (-1, 1) for portfolios with shorting. :type weight_bounds: tuple, optional """ super().__init__(n_assets, tickers) self.bounds = self._make_valid_bounds(weight_bounds) # Optimisation parameters self.initial_guess = np.array([1 / self.n_assets] * self.n_assets) self.constraints = [{"type": "eq", "fun": lambda x: np.sum(x) - 1}] def _make_valid_bounds(self, test_bounds): """ Private method: process input bounds into a form acceptable by scipy.optimize, and check the validity of said bounds. :param test_bounds: minimum and maximum weight of an asset :type test_bounds: tuple :raises ValueError: if ``test_bounds`` is not a tuple of length two. :raises ValueError: if the lower bound is too high :return: a tuple of bounds, e.g ((0, 1), (0, 1), (0, 1) ...) :rtype: tuple of tuples """ if len(test_bounds) != 2 or not isinstance(test_bounds, tuple): raise ValueError( "test_bounds must be a tuple of (lower bound, upper bound)" ) if test_bounds[0] is not None: if test_bounds[0] * self.n_assets > 1: raise ValueError("Lower bound is too high") return (test_bounds,) * self.n_assets def portfolio_performance( expected_returns, cov_matrix, weights, verbose=False, risk_free_rate=0.02 ): """ After optimising, calculate (and optionally print) the performance of the optimal portfolio. Currently calculates expected return, volatility, and the Sharpe ratio. :param expected_returns: expected returns for each asset. Set to None if optimising for volatility only. :type expected_returns: pd.Series, list, np.ndarray :param cov_matrix: covariance of returns for each asset :type cov_matrix: pd.DataFrame or np.array :param weights: weights or assets :type weights: list, np.array or dict, optional :param verbose: whether performance should be printed, defaults to False :type verbose: bool, optional :param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02 :type risk_free_rate: float, optional :raises ValueError: if weights have not been calcualted yet :return: expected return, volatility, Sharpe ratio. :rtype: (float, float, float) """ if isinstance(weights, dict): if isinstance(expected_returns, pd.Series): tickers = list(expected_returns.index) elif isinstance(cov_matrix, pd.DataFrame): tickers = list(cov_matrix.columns) else: tickers = list(range(len(expected_returns))) new_weights = np.zeros(len(tickers)) for i, k in enumerate(tickers): if k in weights: new_weights[i] = weights[k] if new_weights.sum() == 0: raise ValueError("Weights add to zero, or ticker names don't match") elif weights is not None: new_weights = np.asarray(weights) else: raise ValueError("Weights is None") sigma = np.sqrt(objective_functions.volatility(new_weights, cov_matrix)) mu = new_weights.dot(expected_returns) sharpe = -objective_functions.negative_sharpe( new_weights, expected_returns, cov_matrix, risk_free_rate=risk_free_rate ) if verbose: print("Expected annual return: {:.1f}%".format(100 * mu)) print("Annual volatility: {:.1f}%".format(100 * sigma)) print("Sharpe Ratio: {:.2f}".format(sharpe)) return mu, sigma, sharpe