Files
PyPortfolioOpt/pypfopt/efficient_frontier/efficient_semivariance.py

274 lines
12 KiB
Python

"""
The ``efficient_semivariance`` submodule houses the EfficientSemivariance class, which
generates portfolios along the mean-semivariance frontier.
"""
import numpy as np
import cvxpy as cp
from .. import objective_functions
from .efficient_frontier import EfficientFrontier
class EfficientSemivariance(EfficientFrontier):
"""
EfficientSemivariance objects allow for optimization along the mean-semivariance frontier.
This may be relevant for users who are more concerned about downside deviation.
Instance variables:
- Inputs:
- ``n_assets`` - int
- ``tickers`` - str list
- ``bounds`` - float tuple OR (float tuple) list
- ``returns`` - pd.DataFrame
- ``expected_returns`` - np.ndarray
- ``solver`` - str
- ``solver_options`` - {str: str} dict
- Output: ``weights`` - np.ndarray
Public methods:
- ``min_semivariance()`` minimises the portfolio semivariance (downside deviation)
- ``max_quadratic_utility()`` maximises the "downside quadratic utility", given some risk aversion.
- ``efficient_risk()`` maximises return for a given target semideviation
- ``efficient_return()`` minimises semideviation for a given target return
- ``add_objective()`` adds a (convex) objective to the optimization problem
- ``add_constraint()`` adds a constraint to the optimization problem
- ``convex_objective()`` solves for a generic convex objective with linear constraints
- ``portfolio_performance()`` calculates the expected return, semideviation and Sortino ratio for
the optimized portfolio.
- ``set_weights()`` creates self.weights (np.ndarray) from a weights dict
- ``clean_weights()`` rounds the weights and clips near-zeros.
- ``save_weights_to_file()`` saves the weights to csv, json, or txt.
"""
def __init__(
self,
expected_returns,
returns,
frequency=252,
benchmark=0,
weight_bounds=(0, 1),
solver=None,
verbose=False,
solver_options=None,
):
"""
:param expected_returns: expected returns for each asset. Can be None if
optimising for semideviation only.
:type expected_returns: pd.Series, list, np.ndarray
:param returns: (historic) returns for all your assets (no NaNs).
See ``expected_returns.returns_from_prices``.
:type returns: pd.DataFrame or np.array
:param frequency: number of time periods in a year, defaults to 252 (the number
of trading days in a year). This must agree with the frequency
parameter used in your ``expected_returns``.
:type frequency: int, optional
:param benchmark: the return threshold to distinguish "downside" and "upside".
This should match the frequency of your ``returns``,
i.e this should be a benchmark daily returns if your
``returns`` are also daily.
:param weight_bounds: minimum and maximum weight of each asset OR single min/max pair
if all identical, defaults to (0, 1). Must be changed to (-1, 1)
for portfolios with shorting.
:type weight_bounds: tuple OR tuple list, optional
:param solver: name of solver. list available solvers with: `cvxpy.installed_solvers()`
:type solver: str
:param verbose: whether performance and debugging info should be printed, defaults to False
:type verbose: bool, optional
:param solver_options: parameters for the given solver
:type solver_options: dict, optional
:raises TypeError: if ``expected_returns`` is not a series, list or array
"""
# Instantiate parent
super().__init__(
expected_returns=expected_returns,
cov_matrix=np.zeros((returns.shape[1],) * 2), # dummy
weight_bounds=weight_bounds,
solver=solver,
verbose=verbose,
solver_options=solver_options,
)
self.returns = self._validate_returns(returns)
self.benchmark = benchmark
self.frequency = frequency
self._T = self.returns.shape[0]
def min_volatility(self):
raise NotImplementedError("Please use min_semivariance instead.")
def max_sharpe(self, risk_free_rate=0.02):
raise NotImplementedError("Method not available in EfficientSemivariance")
def min_semivariance(self, market_neutral=False):
"""
Minimise portfolio semivariance (see docs for further explanation).
:param market_neutral: whether the portfolio should be market neutral (weights sum to zero),
defaults to False. Requires negative lower weight bound.
:param market_neutral: bool, optional
:return: asset weights for the volatility-minimising portfolio
:rtype: OrderedDict
"""
p = cp.Variable(self._T, nonneg=True)
n = cp.Variable(self._T, nonneg=True)
self._objective = cp.sum(cp.square(n))
for obj in self._additional_objectives:
self._objective += obj
B = (self.returns.values - self.benchmark) / np.sqrt(self._T)
self.add_constraint(lambda w: B @ w - p + n == 0)
self._make_weight_sum_constraint(market_neutral)
return self._solve_cvxpy_opt_problem()
def max_quadratic_utility(self, risk_aversion=1, market_neutral=False):
"""
Maximise the given quadratic utility, using portfolio semivariance instead
of variance.
:param risk_aversion: risk aversion parameter (must be greater than 0),
defaults to 1
:type risk_aversion: positive float
:param market_neutral: whether the portfolio should be market neutral (weights sum to zero),
defaults to False. Requires negative lower weight bound.
:param market_neutral: bool, optional
:return: asset weights for the maximum-utility portfolio
:rtype: OrderedDict
"""
if risk_aversion <= 0:
raise ValueError("risk aversion coefficient must be greater than zero")
update_existing_parameter = self.is_parameter_defined('risk_aversion')
if update_existing_parameter:
self._validate_market_neutral(market_neutral)
self.update_parameter_value('risk_aversion', risk_aversion)
else:
p = cp.Variable(self._T, nonneg=True)
n = cp.Variable(self._T, nonneg=True)
mu = objective_functions.portfolio_return(self._w, self.expected_returns)
mu /= self.frequency
risk_aversion_par = cp.Parameter(value=risk_aversion, name='risk_aversion', nonneg=True)
self._objective = mu + 0.5 * risk_aversion_par * cp.sum(cp.square(n))
for obj in self._additional_objectives:
self._objective += obj
B = (self.returns.values - self.benchmark) / np.sqrt(self._T)
self.add_constraint(lambda w: B @ w - p + n == 0)
self._make_weight_sum_constraint(market_neutral)
return self._solve_cvxpy_opt_problem()
def efficient_risk(self, target_semideviation, market_neutral=False):
"""
Maximise return for a target semideviation (downside standard deviation).
The resulting portfolio will have a semideviation less than the target
(but not guaranteed to be equal).
:param target_semideviation: the desired maximum semideviation of the resulting portfolio.
:type target_semideviation: float
:param market_neutral: whether the portfolio should be market neutral (weights sum to zero),
defaults to False. Requires negative lower weight bound.
:param market_neutral: bool, optional
:return: asset weights for the efficient risk portfolio
:rtype: OrderedDict
"""
update_existing_parameter = self.is_parameter_defined('target_semivariance')
if update_existing_parameter:
self._validate_market_neutral(market_neutral)
self.update_parameter_value('target_semivariance', target_semideviation ** 2)
else:
self._objective = objective_functions.portfolio_return(
self._w, self.expected_returns
)
for obj in self._additional_objectives:
self._objective += obj
p = cp.Variable(self._T, nonneg=True)
n = cp.Variable(self._T, nonneg=True)
target_semivariance = cp.Parameter(value=target_semideviation**2, name='target_semivariance', nonneg=True)
self.add_constraint(lambda _: self.frequency * cp.sum(cp.square(n)) <= target_semivariance)
B = (self.returns.values - self.benchmark) / np.sqrt(self._T)
self.add_constraint(lambda w: B @ w - p + n == 0)
self._make_weight_sum_constraint(market_neutral)
return self._solve_cvxpy_opt_problem()
def efficient_return(self, target_return, market_neutral=False):
"""
Minimise semideviation for a given target return.
:param target_return: the desired return of the resulting portfolio.
:type target_return: float
:param market_neutral: whether the portfolio should be market neutral (weights sum to zero),
defaults to False. Requires negative lower weight bound.
:type market_neutral: bool, optional
:raises ValueError: if ``target_return`` is not a positive float
:raises ValueError: if no portfolio can be found with return equal to ``target_return``
:return: asset weights for the optimal portfolio
:rtype: OrderedDict
"""
if not isinstance(target_return, float) or target_return < 0:
raise ValueError("target_return should be a positive float")
if target_return > np.abs(self.expected_returns).max():
raise ValueError(
"target_return must be lower than the largest expected return"
)
update_existing_parameter = self.is_parameter_defined('target_return')
if update_existing_parameter:
self._validate_market_neutral(market_neutral)
self.update_parameter_value('target_return', target_return)
else:
p = cp.Variable(self._T, nonneg=True)
n = cp.Variable(self._T, nonneg=True)
self._objective = cp.sum(cp.square(n))
for obj in self._additional_objectives:
self._objective += obj
target_return_par = cp.Parameter(name='target_return', value=target_return)
self.add_constraint(lambda w: cp.sum(w @ self.expected_returns) >= target_return_par)
B = (self.returns.values - self.benchmark) / np.sqrt(self._T)
self.add_constraint(lambda w: B @ w - p + n == 0)
self._make_weight_sum_constraint(market_neutral)
return self._solve_cvxpy_opt_problem()
def portfolio_performance(self, verbose=False, risk_free_rate=0.02):
"""
After optimising, calculate (and optionally print) the performance of the optimal
portfolio, specifically: expected return, semideviation, Sortino ratio.
:param verbose: whether performance should be printed, defaults to False
:type verbose: bool, optional
:param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02.
The period of the risk-free rate should correspond to the
frequency of expected returns.
:type risk_free_rate: float, optional
:raises ValueError: if weights have not been calcualted yet
:return: expected return, semideviation, Sortino ratio.
:rtype: (float, float, float)
"""
mu = objective_functions.portfolio_return(
self.weights, self.expected_returns, negative=False
)
portfolio_returns = self.returns @ self.weights
drops = np.fmin(portfolio_returns - self.benchmark, 0)
semivariance = np.sum(np.square(drops)) / self._T * self.frequency
semi_deviation = np.sqrt(semivariance)
sortino_ratio = (mu - risk_free_rate) / semi_deviation
if verbose:
print("Expected annual return: {:.1f}%".format(100 * mu))
print("Annual semi-deviation: {:.1f}%".format(100 * semi_deviation))
print("Sortino Ratio: {:.2f}".format(sortino_ratio))
return mu, semi_deviation, sortino_ratio