mirror of
https://github.com/robertmartin8/PyPortfolioOpt.git
synced 2022-11-27 18:02:41 +03:00
274 lines
12 KiB
Python
274 lines
12 KiB
Python
"""
|
|
The ``efficient_semivariance`` submodule houses the EfficientSemivariance class, which
|
|
generates portfolios along the mean-semivariance frontier.
|
|
"""
|
|
|
|
|
|
import numpy as np
|
|
import cvxpy as cp
|
|
|
|
from .. import objective_functions
|
|
from .efficient_frontier import EfficientFrontier
|
|
|
|
|
|
class EfficientSemivariance(EfficientFrontier):
|
|
"""
|
|
EfficientSemivariance objects allow for optimization along the mean-semivariance frontier.
|
|
This may be relevant for users who are more concerned about downside deviation.
|
|
|
|
Instance variables:
|
|
|
|
- Inputs:
|
|
|
|
- ``n_assets`` - int
|
|
- ``tickers`` - str list
|
|
- ``bounds`` - float tuple OR (float tuple) list
|
|
- ``returns`` - pd.DataFrame
|
|
- ``expected_returns`` - np.ndarray
|
|
- ``solver`` - str
|
|
- ``solver_options`` - {str: str} dict
|
|
|
|
|
|
- Output: ``weights`` - np.ndarray
|
|
|
|
Public methods:
|
|
|
|
- ``min_semivariance()`` minimises the portfolio semivariance (downside deviation)
|
|
- ``max_quadratic_utility()`` maximises the "downside quadratic utility", given some risk aversion.
|
|
- ``efficient_risk()`` maximises return for a given target semideviation
|
|
- ``efficient_return()`` minimises semideviation for a given target return
|
|
- ``add_objective()`` adds a (convex) objective to the optimization problem
|
|
- ``add_constraint()`` adds a constraint to the optimization problem
|
|
- ``convex_objective()`` solves for a generic convex objective with linear constraints
|
|
|
|
- ``portfolio_performance()`` calculates the expected return, semideviation and Sortino ratio for
|
|
the optimized portfolio.
|
|
- ``set_weights()`` creates self.weights (np.ndarray) from a weights dict
|
|
- ``clean_weights()`` rounds the weights and clips near-zeros.
|
|
- ``save_weights_to_file()`` saves the weights to csv, json, or txt.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
expected_returns,
|
|
returns,
|
|
frequency=252,
|
|
benchmark=0,
|
|
weight_bounds=(0, 1),
|
|
solver=None,
|
|
verbose=False,
|
|
solver_options=None,
|
|
):
|
|
"""
|
|
:param expected_returns: expected returns for each asset. Can be None if
|
|
optimising for semideviation only.
|
|
:type expected_returns: pd.Series, list, np.ndarray
|
|
:param returns: (historic) returns for all your assets (no NaNs).
|
|
See ``expected_returns.returns_from_prices``.
|
|
:type returns: pd.DataFrame or np.array
|
|
:param frequency: number of time periods in a year, defaults to 252 (the number
|
|
of trading days in a year). This must agree with the frequency
|
|
parameter used in your ``expected_returns``.
|
|
:type frequency: int, optional
|
|
:param benchmark: the return threshold to distinguish "downside" and "upside".
|
|
This should match the frequency of your ``returns``,
|
|
i.e this should be a benchmark daily returns if your
|
|
``returns`` are also daily.
|
|
:param weight_bounds: minimum and maximum weight of each asset OR single min/max pair
|
|
if all identical, defaults to (0, 1). Must be changed to (-1, 1)
|
|
for portfolios with shorting.
|
|
:type weight_bounds: tuple OR tuple list, optional
|
|
:param solver: name of solver. list available solvers with: `cvxpy.installed_solvers()`
|
|
:type solver: str
|
|
:param verbose: whether performance and debugging info should be printed, defaults to False
|
|
:type verbose: bool, optional
|
|
:param solver_options: parameters for the given solver
|
|
:type solver_options: dict, optional
|
|
:raises TypeError: if ``expected_returns`` is not a series, list or array
|
|
"""
|
|
# Instantiate parent
|
|
super().__init__(
|
|
expected_returns=expected_returns,
|
|
cov_matrix=np.zeros((returns.shape[1],) * 2), # dummy
|
|
weight_bounds=weight_bounds,
|
|
solver=solver,
|
|
verbose=verbose,
|
|
solver_options=solver_options,
|
|
)
|
|
|
|
self.returns = self._validate_returns(returns)
|
|
self.benchmark = benchmark
|
|
self.frequency = frequency
|
|
self._T = self.returns.shape[0]
|
|
|
|
def min_volatility(self):
|
|
raise NotImplementedError("Please use min_semivariance instead.")
|
|
|
|
def max_sharpe(self, risk_free_rate=0.02):
|
|
raise NotImplementedError("Method not available in EfficientSemivariance")
|
|
|
|
def min_semivariance(self, market_neutral=False):
|
|
"""
|
|
Minimise portfolio semivariance (see docs for further explanation).
|
|
|
|
:param market_neutral: whether the portfolio should be market neutral (weights sum to zero),
|
|
defaults to False. Requires negative lower weight bound.
|
|
:param market_neutral: bool, optional
|
|
:return: asset weights for the volatility-minimising portfolio
|
|
:rtype: OrderedDict
|
|
"""
|
|
p = cp.Variable(self._T, nonneg=True)
|
|
n = cp.Variable(self._T, nonneg=True)
|
|
self._objective = cp.sum(cp.square(n))
|
|
|
|
for obj in self._additional_objectives:
|
|
self._objective += obj
|
|
|
|
B = (self.returns.values - self.benchmark) / np.sqrt(self._T)
|
|
self.add_constraint(lambda w: B @ w - p + n == 0)
|
|
self._make_weight_sum_constraint(market_neutral)
|
|
return self._solve_cvxpy_opt_problem()
|
|
|
|
def max_quadratic_utility(self, risk_aversion=1, market_neutral=False):
|
|
"""
|
|
Maximise the given quadratic utility, using portfolio semivariance instead
|
|
of variance.
|
|
|
|
:param risk_aversion: risk aversion parameter (must be greater than 0),
|
|
defaults to 1
|
|
:type risk_aversion: positive float
|
|
:param market_neutral: whether the portfolio should be market neutral (weights sum to zero),
|
|
defaults to False. Requires negative lower weight bound.
|
|
:param market_neutral: bool, optional
|
|
:return: asset weights for the maximum-utility portfolio
|
|
:rtype: OrderedDict
|
|
"""
|
|
if risk_aversion <= 0:
|
|
raise ValueError("risk aversion coefficient must be greater than zero")
|
|
|
|
update_existing_parameter = self.is_parameter_defined('risk_aversion')
|
|
if update_existing_parameter:
|
|
self._validate_market_neutral(market_neutral)
|
|
self.update_parameter_value('risk_aversion', risk_aversion)
|
|
else:
|
|
p = cp.Variable(self._T, nonneg=True)
|
|
n = cp.Variable(self._T, nonneg=True)
|
|
mu = objective_functions.portfolio_return(self._w, self.expected_returns)
|
|
mu /= self.frequency
|
|
risk_aversion_par = cp.Parameter(value=risk_aversion, name='risk_aversion', nonneg=True)
|
|
self._objective = mu + 0.5 * risk_aversion_par * cp.sum(cp.square(n))
|
|
for obj in self._additional_objectives:
|
|
self._objective += obj
|
|
|
|
B = (self.returns.values - self.benchmark) / np.sqrt(self._T)
|
|
self.add_constraint(lambda w: B @ w - p + n == 0)
|
|
self._make_weight_sum_constraint(market_neutral)
|
|
return self._solve_cvxpy_opt_problem()
|
|
|
|
def efficient_risk(self, target_semideviation, market_neutral=False):
|
|
"""
|
|
Maximise return for a target semideviation (downside standard deviation).
|
|
The resulting portfolio will have a semideviation less than the target
|
|
(but not guaranteed to be equal).
|
|
|
|
:param target_semideviation: the desired maximum semideviation of the resulting portfolio.
|
|
:type target_semideviation: float
|
|
:param market_neutral: whether the portfolio should be market neutral (weights sum to zero),
|
|
defaults to False. Requires negative lower weight bound.
|
|
:param market_neutral: bool, optional
|
|
:return: asset weights for the efficient risk portfolio
|
|
:rtype: OrderedDict
|
|
"""
|
|
update_existing_parameter = self.is_parameter_defined('target_semivariance')
|
|
if update_existing_parameter:
|
|
self._validate_market_neutral(market_neutral)
|
|
self.update_parameter_value('target_semivariance', target_semideviation ** 2)
|
|
else:
|
|
self._objective = objective_functions.portfolio_return(
|
|
self._w, self.expected_returns
|
|
)
|
|
for obj in self._additional_objectives:
|
|
self._objective += obj
|
|
|
|
p = cp.Variable(self._T, nonneg=True)
|
|
n = cp.Variable(self._T, nonneg=True)
|
|
|
|
target_semivariance = cp.Parameter(value=target_semideviation**2, name='target_semivariance', nonneg=True)
|
|
self.add_constraint(lambda _: self.frequency * cp.sum(cp.square(n)) <= target_semivariance)
|
|
B = (self.returns.values - self.benchmark) / np.sqrt(self._T)
|
|
self.add_constraint(lambda w: B @ w - p + n == 0)
|
|
self._make_weight_sum_constraint(market_neutral)
|
|
return self._solve_cvxpy_opt_problem()
|
|
|
|
def efficient_return(self, target_return, market_neutral=False):
|
|
"""
|
|
Minimise semideviation for a given target return.
|
|
|
|
:param target_return: the desired return of the resulting portfolio.
|
|
:type target_return: float
|
|
:param market_neutral: whether the portfolio should be market neutral (weights sum to zero),
|
|
defaults to False. Requires negative lower weight bound.
|
|
:type market_neutral: bool, optional
|
|
:raises ValueError: if ``target_return`` is not a positive float
|
|
:raises ValueError: if no portfolio can be found with return equal to ``target_return``
|
|
:return: asset weights for the optimal portfolio
|
|
:rtype: OrderedDict
|
|
"""
|
|
if not isinstance(target_return, float) or target_return < 0:
|
|
raise ValueError("target_return should be a positive float")
|
|
if target_return > np.abs(self.expected_returns).max():
|
|
raise ValueError(
|
|
"target_return must be lower than the largest expected return"
|
|
)
|
|
|
|
update_existing_parameter = self.is_parameter_defined('target_return')
|
|
if update_existing_parameter:
|
|
self._validate_market_neutral(market_neutral)
|
|
self.update_parameter_value('target_return', target_return)
|
|
else:
|
|
|
|
p = cp.Variable(self._T, nonneg=True)
|
|
n = cp.Variable(self._T, nonneg=True)
|
|
self._objective = cp.sum(cp.square(n))
|
|
for obj in self._additional_objectives:
|
|
self._objective += obj
|
|
|
|
target_return_par = cp.Parameter(name='target_return', value=target_return)
|
|
self.add_constraint(lambda w: cp.sum(w @ self.expected_returns) >= target_return_par)
|
|
B = (self.returns.values - self.benchmark) / np.sqrt(self._T)
|
|
self.add_constraint(lambda w: B @ w - p + n == 0)
|
|
self._make_weight_sum_constraint(market_neutral)
|
|
return self._solve_cvxpy_opt_problem()
|
|
|
|
def portfolio_performance(self, verbose=False, risk_free_rate=0.02):
|
|
"""
|
|
After optimising, calculate (and optionally print) the performance of the optimal
|
|
portfolio, specifically: expected return, semideviation, Sortino ratio.
|
|
|
|
:param verbose: whether performance should be printed, defaults to False
|
|
:type verbose: bool, optional
|
|
:param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02.
|
|
The period of the risk-free rate should correspond to the
|
|
frequency of expected returns.
|
|
:type risk_free_rate: float, optional
|
|
:raises ValueError: if weights have not been calcualted yet
|
|
:return: expected return, semideviation, Sortino ratio.
|
|
:rtype: (float, float, float)
|
|
"""
|
|
mu = objective_functions.portfolio_return(
|
|
self.weights, self.expected_returns, negative=False
|
|
)
|
|
|
|
portfolio_returns = self.returns @ self.weights
|
|
drops = np.fmin(portfolio_returns - self.benchmark, 0)
|
|
semivariance = np.sum(np.square(drops)) / self._T * self.frequency
|
|
semi_deviation = np.sqrt(semivariance)
|
|
sortino_ratio = (mu - risk_free_rate) / semi_deviation
|
|
|
|
if verbose:
|
|
print("Expected annual return: {:.1f}%".format(100 * mu))
|
|
print("Annual semi-deviation: {:.1f}%".format(100 * semi_deviation))
|
|
print("Sortino Ratio: {:.2f}".format(sortino_ratio))
|
|
|
|
return mu, semi_deviation, sortino_ratio
|