Files
PyPortfolioOpt/tests/test_efficient_frontier.py
robertmartin8 6a144aad46 fixed tests
2018-09-20 20:11:40 +01:00

511 lines
17 KiB
Python
Executable File

import warnings
import numpy as np
import pandas as pd
import pytest
from pypfopt.efficient_frontier import EfficientFrontier
from tests.utilities_for_tests import get_data, setup_efficient_frontier
from pypfopt import risk_models
def test_data_source():
df = get_data()
assert isinstance(df, pd.DataFrame)
assert df.shape[1] == 20
assert len(df) == 7126
assert df.index.is_all_dates
def test_returns_dataframe():
df = get_data()
returns_df = df.pct_change().dropna(how="all")
assert isinstance(returns_df, pd.DataFrame)
assert returns_df.shape[1] == 20
assert len(returns_df) == 7125
assert returns_df.index.is_all_dates
assert not ((returns_df > 1) & returns_df.notnull()).any().any()
def test_portfolio_performance():
ef = setup_efficient_frontier()
with pytest.raises(ValueError):
ef.portfolio_performance()
ef.max_sharpe()
assert ef.portfolio_performance()
def test_efficient_frontier_inheritance():
ef = setup_efficient_frontier()
assert ef.clean_weights
assert isinstance(ef.initial_guess, np.ndarray)
assert isinstance(ef.constraints, list)
def test_max_sharpe_long_only():
ef = setup_efficient_frontier()
w = ef.max_sharpe()
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.3303554237026972, 0.21671629636481254, 1.4288438866031374),
)
def test_max_sharpe_short():
ef = EfficientFrontier(
*setup_efficient_frontier(data_only=True), weight_bounds=(None, None)
)
w = ef.max_sharpe()
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.40723757138191374, 0.24823079451957306, 1.5524922427959371),
)
sharpe = ef.portfolio_performance()[2]
ef_long_only = setup_efficient_frontier()
ef_long_only.max_sharpe()
long_only_sharpe = ef_long_only.portfolio_performance()[2]
assert sharpe > long_only_sharpe
def test_max_sharpe_L2_reg():
ef = setup_efficient_frontier()
ef.gamma = 1
w = ef.max_sharpe()
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.3062919882686126, 0.20291367026287507, 1.4087639167552641),
)
def test_max_sharpe_L2_reg_many_values():
ef = setup_efficient_frontier()
ef.max_sharpe()
# Count the number of weights more 1%
initial_number = sum(ef.weights > 0.01)
for a in np.arange(0.5, 5, 0.5):
ef.gamma = a
ef.max_sharpe()
np.testing.assert_almost_equal(ef.weights.sum(), 1)
new_number = sum(ef.weights > 0.01)
# Higher gamma should reduce the number of small weights
assert new_number >= initial_number
initial_number = new_number
def test_max_sharpe_L2_reg_limit_case():
ef = setup_efficient_frontier()
ef.gamma = 1e10
ef.max_sharpe()
equal_weights = np.array([1 / ef.n_assets] * ef.n_assets)
np.testing.assert_array_almost_equal(ef.weights, equal_weights)
def test_max_sharpe_L2_reg_reduces_sharpe():
# L2 reg should reduce the number of small weights at the cost of Sharpe
ef_no_reg = setup_efficient_frontier()
ef_no_reg.max_sharpe()
sharpe_no_reg = ef_no_reg.portfolio_performance()[2]
ef = setup_efficient_frontier()
ef.gamma = 1
ef.max_sharpe()
sharpe = ef.portfolio_performance()[2]
assert sharpe < sharpe_no_reg
def test_max_sharpe_L2_reg_with_shorts():
ef_no_reg = setup_efficient_frontier()
ef_no_reg.max_sharpe()
initial_number = sum(ef_no_reg.weights > 0.01)
ef = EfficientFrontier(
*setup_efficient_frontier(data_only=True), weight_bounds=(None, None)
)
ef.gamma = 1
w = ef.max_sharpe()
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.3236047844566581, 0.20241509723550233, 1.4969817524033966),
)
new_number = sum(ef.weights > 0.01)
assert new_number >= initial_number
def test_max_sharpe_risk_free_rate():
ef = setup_efficient_frontier()
ef.max_sharpe()
_, _, initial_sharpe = ef.portfolio_performance()
ef.max_sharpe(risk_free_rate=0.10)
_, _, new_sharpe = ef.portfolio_performance(risk_free_rate=0.10)
assert new_sharpe <= initial_sharpe
ef.max_sharpe(risk_free_rate=0)
_, _, new_sharpe = ef.portfolio_performance(risk_free_rate=0)
assert new_sharpe >= initial_sharpe
def test_max_sharpe_input_errors():
with pytest.raises(ValueError):
ef = EfficientFrontier(
*setup_efficient_frontier(data_only=True), gamma="2"
)
with warnings.catch_warnings(record=True) as w:
ef = EfficientFrontier(
*setup_efficient_frontier(data_only=True), gamma=-1)
assert len(w) == 1
assert issubclass(w[0].category, UserWarning)
assert (
str(w[0].message)
== "in most cases, gamma should be positive"
)
with pytest.raises(ValueError):
ef.max_sharpe(risk_free_rate="0.2")
def test_min_volatility():
ef = setup_efficient_frontier()
w = ef.min_volatility()
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.17915572327783236, 0.1591542642140098, 0.9971057459792518),
)
def test_min_volatility_short():
ef = EfficientFrontier(
*setup_efficient_frontier(data_only=True), weight_bounds=(None, None)
)
w = ef.min_volatility()
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.1719799158957379, 0.15559547854162945, 0.9734986722620801),
)
# Shorting should reduce volatility
volatility = ef.portfolio_performance()[1]
ef_long_only = setup_efficient_frontier()
ef_long_only.min_volatility()
long_only_volatility = ef_long_only.portfolio_performance()[1]
assert volatility < long_only_volatility
def test_min_volatility_L2_reg():
ef = setup_efficient_frontier()
ef.gamma = 1
w = ef.min_volatility()
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.2313619320427517, 0.195525914008473, 1.0799317402364261),
)
def test_min_volatility_L2_reg_many_values():
ef = setup_efficient_frontier()
ef.min_volatility()
# Count the number of weights more 1%
initial_number = sum(ef.weights > 0.01)
for a in np.arange(0.5, 5, 0.5):
ef.gamma = a
ef.min_volatility()
np.testing.assert_almost_equal(ef.weights.sum(), 1)
new_number = sum(ef.weights > 0.01)
# Higher gamma should reduce the number of small weights
assert new_number >= initial_number
initial_number = new_number
def test_efficient_risk():
ef = setup_efficient_frontier()
w = ef.efficient_risk(0.19)
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(), (0.2857747021121558, 0.19, 1.396492876), atol=1e-6
)
def test_efficient_risk_many_values():
ef = setup_efficient_frontier()
for target_risk in np.arange(0.16, 0.21, 0.01):
ef.efficient_risk(target_risk)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
volatility = ef.portfolio_performance()[1]
assert abs(target_risk - volatility) < 0.05
def test_efficient_risk_short():
ef = EfficientFrontier(
*setup_efficient_frontier(data_only=True), weight_bounds=(None, None)
)
w = ef.efficient_risk(0.19)
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.30468522897560224, 0.19, 1.4947624032507056),
atol=1e6,
)
sharpe = ef.portfolio_performance()[2]
ef_long_only = setup_efficient_frontier()
ef_long_only.efficient_return(0.25)
long_only_sharpe = ef_long_only.portfolio_performance()[2]
assert sharpe > long_only_sharpe
def test_efficient_risk_L2_reg():
ef = setup_efficient_frontier()
ef.gamma = 1
w = ef.efficient_risk(0.19)
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.2843888327412046, 0.19, 1.3895318474675356),
atol=1e-6,
)
def test_efficient_risk_L2_reg_many_values():
ef = setup_efficient_frontier()
ef.efficient_risk(0.19)
# Count the number of weights more 1%
initial_number = sum(ef.weights > 0.01)
for a in np.arange(0.5, 5, 0.5):
ef.gamma = a
ef.efficient_risk(0.19)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
new_number = sum(ef.weights > 0.01)
# Higher gamma should reduce the number of small weights
assert new_number >= initial_number
initial_number = new_number
def test_efficient_risk_market_neutral():
ef = EfficientFrontier(
*setup_efficient_frontier(data_only=True), weight_bounds=(-1, 1)
)
w = ef.efficient_risk(0.19, market_neutral=True)
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 0)
assert (ef.weights < 1).all() and (ef.weights > -1).all()
np.testing.assert_almost_equal(
ef.portfolio_performance(),
(0.2309497469661495, 0.19000021138101422, 1.1021245569881066)
)
sharpe = ef.portfolio_performance()[2]
ef_long_only = setup_efficient_frontier()
ef_long_only.efficient_return(0.25)
long_only_sharpe = ef_long_only.portfolio_performance()[2]
assert long_only_sharpe > sharpe
def test_efficient_risk_market_neutral_warning():
ef = setup_efficient_frontier()
with warnings.catch_warnings(record=True) as w:
ef.efficient_risk(0.19, market_neutral=True)
assert len(w) == 1
assert issubclass(w[0].category, RuntimeWarning)
assert (
str(w[0].message)
== "Market neutrality requires shorting - bounds have been amended"
)
def test_efficient_return():
ef = setup_efficient_frontier()
w = ef.efficient_return(0.25)
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(), (0.25, 0.17388778912324757, 1.3204920206007777), atol=1e-6
)
def test_efficient_return_many_values():
ef = setup_efficient_frontier()
for target_return in np.arange(0.19, 0.30, 0.01):
ef.efficient_return(target_return)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
mean_return = ef.portfolio_performance()[0]
assert abs(target_return - mean_return) < 0.05
def test_efficient_return_short():
ef = EfficientFrontier(
*setup_efficient_frontier(data_only=True), weight_bounds=(None, None)
)
w = ef.efficient_return(0.25)
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(), (0.25, 0.168264744226909, 1.3640929002973508)
)
sharpe = ef.portfolio_performance()[2]
ef_long_only = setup_efficient_frontier()
ef_long_only.efficient_return(0.25)
long_only_sharpe = ef_long_only.portfolio_performance()[2]
assert sharpe > long_only_sharpe
def test_efficient_return_L2_reg():
ef = setup_efficient_frontier()
ef.gamma = 1
w = ef.efficient_return(0.25)
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(), (0.25, 0.20032972838376054, 1.1470454626523598)
)
def test_efficient_return_L2_reg_many_values():
ef = setup_efficient_frontier()
ef.efficient_return(0.25)
# Count the number of weights more 1%
initial_number = sum(ef.weights > 0.01)
for a in np.arange(0.5, 5, 0.5):
ef.gamma = a
ef.efficient_return(0.25)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
new_number = sum(ef.weights > 0.01)
# Higher gamma should reduce the number of small weights
assert new_number >= initial_number
initial_number = new_number
def test_efficient_return_market_neutral():
ef = EfficientFrontier(
*setup_efficient_frontier(data_only=True), weight_bounds=(-1, 1)
)
w = ef.efficient_return(0.25, market_neutral=True)
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 0)
assert (ef.weights < 1).all() and (ef.weights > -1).all()
np.testing.assert_almost_equal(
ef.portfolio_performance(),
(0.25, 0.20567621957041887, 1.1087335497769277)
)
sharpe = ef.portfolio_performance()[2]
ef_long_only = setup_efficient_frontier()
ef_long_only.efficient_return(0.25)
long_only_sharpe = ef_long_only.portfolio_performance()[2]
assert long_only_sharpe > sharpe
def test_efficient_return_market_neutral_warning():
ef = setup_efficient_frontier()
with warnings.catch_warnings(record=True) as w:
ef.efficient_return(0.25, market_neutral=True)
assert len(w) == 1
assert issubclass(w[0].category, RuntimeWarning)
assert (
str(w[0].message)
== "Market neutrality requires shorting - bounds have been amended"
)
def test_max_sharpe_semicovariance():
# f
df = get_data()
ef = setup_efficient_frontier()
ef.cov_matrix = risk_models.semicovariance(df, benchmark=0)
w = ef.max_sharpe()
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.2972237362989219, 0.064432672830601, 4.297294313174586)
)
def test_min_volatilty_semicovariance_L2_reg():
# f
df = get_data()
ef = setup_efficient_frontier()
ef.cov_matrix = risk_models.semicovariance(df, benchmark=0)
w = ef.min_volatility()
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.20661406122127524, 0.055515981410304394, 3.3567606718215663)
)
def test_efficient_return_semicovariance():
# f
df = get_data()
ef = setup_efficient_frontier()
ef.cov_matrix = risk_models.semicovariance(df, benchmark=0)
w = ef.efficient_return(0.12)
assert isinstance(w, dict)
assert set(w.keys()) == set(ef.tickers)
assert set(w.keys()) == set(ef.expected_returns.index)
np.testing.assert_almost_equal(ef.weights.sum(), 1)
np.testing.assert_allclose(
ef.portfolio_performance(),
(0.12000000000871075, 0.06948386214063361, 1.4319423610177537)
)