Files
PyPortfolioOpt/pypfopt/cla.py
2019-12-10 21:58:25 +00:00

433 lines
16 KiB
Python

"""
The ``cla`` module houses the CLA class, which
generates optimal portfolios using the Critical Line Algorithm as implemented
by Marcos Lopez de Prado and David Bailey.
"""
from math import log, ceil
import numbers
import numpy as np
import pandas as pd
from . import base_optimizer
def _infnone(x):
"""
Helper method to map None to float infinity.
:param x: argument
:type x: float
:return: infinity if the argmument was None otherwise x
:rtype: float
"""
return float("-inf") if x is None else x
class CLA(base_optimizer.BaseOptimizer):
"""
Instance variables:
- Inputs:
- ``n_assets`` - int
- ``tickers`` - str list
- ``mean`` - np.ndarray
- ``cov_matrix`` - pd.DataFrame
- ``expected_returns`` - pd.Series
- ``lb`` - np.ndarray
- ``ub`` - np.ndarray
- Optimisation parameters:
- ``w`` - np.ndarray list
- ``ls`` - float list
- ``g`` - float list
- ``f`` - float list list
- Outputs: ``weights`` - np.ndarray
"""
def __init__(self, expected_returns, cov_matrix, weight_bounds=(0, 1)):
"""
:param expected_returns: expected returns for each asset. Set to None if
optimising for volatility only.
:type expected_returns: pd.Series, list, np.ndarray
:param cov_matrix: covariance of returns for each asset
:type cov_matrix: pd.DataFrame or np.array
:param weight_bounds: minimum and maximum weight of an asset, defaults to (0, 1).
Must be changed to (-1, 1) for portfolios with shorting.
:type weight_bounds: tuple (float, float) or (list/ndarray, list/ndarray)
:raises TypeError: if ``expected_returns`` is not a series, list or array
:raises TypeError: if ``cov_matrix`` is not a dataframe or array
"""
# Initialize the class
self.mean = np.array(expected_returns).reshape((len(expected_returns), 1))
if (self.mean == np.ones(self.mean.shape) * self.mean.mean()).all():
self.mean[-1, 0] += 1e-5
self.expected_returns = self.mean.reshape((len(self.mean),))
self.cov_matrix = np.asarray(cov_matrix)
# Bounds
if len(weight_bounds) == len(self.mean):
self.lB = np.array([b[0] for b in weight_bounds]).reshape(-1, 1)
self.uB = np.array([b[1] for b in weight_bounds]).reshape(-1, 1)
else:
if isinstance(weight_bounds[0], numbers.Real):
self.lB = np.ones(self.mean.shape) * weight_bounds[0]
else:
self.lB = np.array(weight_bounds[0]).reshape(self.mean.shape)
if isinstance(weight_bounds[0], numbers.Real):
self.uB = np.ones(self.mean.shape) * weight_bounds[1]
else:
self.uB = np.array(weight_bounds[1]).reshape(self.mean.shape)
self.w = [] # solution
self.ls = [] # lambdas
self.g = [] # gammas
self.f = [] # free weights
if isinstance(expected_returns, pd.Series):
tickers = list(expected_returns.index)
else:
tickers = list(range(len(self.mean)))
super().__init__(len(tickers), tickers)
def _init_algo(self):
# Initialize the algo
# 1) Form structured array
a = np.zeros((self.mean.shape[0]), dtype=[("id", int), ("mu", float)])
b = [self.mean[i][0] for i in range(self.mean.shape[0])] # dump array into list
# fill structured array
a[:] = list(zip(list(range(self.mean.shape[0])), b))
# 2) Sort structured array
b = np.sort(a, order="mu")
# 3) First free weight
i, w = b.shape[0], np.copy(self.lB)
while sum(w) < 1:
i -= 1
w[b[i][0]] = self.uB[b[i][0]]
w[b[i][0]] += 1 - sum(w)
return [b[i][0]], w
def _compute_bi(self, c, bi):
if c > 0:
bi = bi[1][0]
if c < 0:
bi = bi[0][0]
return bi
def _compute_w(self, covarF_inv, covarFB, meanF, wB):
# 1) compute gamma
onesF = np.ones(meanF.shape)
g1 = np.dot(np.dot(onesF.T, covarF_inv), meanF)
g2 = np.dot(np.dot(onesF.T, covarF_inv), onesF)
if wB is None:
g, w1 = float(-self.ls[-1] * g1 / g2 + 1 / g2), 0
else:
onesB = np.ones(wB.shape)
g3 = np.dot(onesB.T, wB)
g4 = np.dot(covarF_inv, covarFB)
w1 = np.dot(g4, wB)
g4 = np.dot(onesF.T, w1)
g = float(-self.ls[-1] * g1 / g2 + (1 - g3 + g4) / g2)
# 2) compute weights
w2 = np.dot(covarF_inv, onesF)
w3 = np.dot(covarF_inv, meanF)
return -w1 + g * w2 + self.ls[-1] * w3, g
def _compute_lambda(self, covarF_inv, covarFB, meanF, wB, i, bi):
# 1) C
onesF = np.ones(meanF.shape)
c1 = np.dot(np.dot(onesF.T, covarF_inv), onesF)
c2 = np.dot(covarF_inv, meanF)
c3 = np.dot(np.dot(onesF.T, covarF_inv), meanF)
c4 = np.dot(covarF_inv, onesF)
c = -c1 * c2[i] + c3 * c4[i]
if c == 0:
return None, None
# 2) bi
if type(bi) == list:
bi = self._compute_bi(c, bi)
# 3) Lambda
if wB is None:
# All free assets
return float((c4[i] - c1 * bi) / c), bi
else:
onesB = np.ones(wB.shape)
l1 = np.dot(onesB.T, wB)
l2 = np.dot(covarF_inv, covarFB)
l3 = np.dot(l2, wB)
l2 = np.dot(onesF.T, l3)
return float(((1 - l1 + l2) * c4[i] - c1 * (bi + l3[i])) / c), bi
def _get_matrices(self, f):
# Slice covarF,covarFB,covarB,meanF,meanB,wF,wB
covarF = self._reduce_matrix(self.cov_matrix, f, f)
meanF = self._reduce_matrix(self.mean, f, [0])
b = self._get_b(f)
covarFB = self._reduce_matrix(self.cov_matrix, f, b)
wB = self._reduce_matrix(self.w[-1], b, [0])
return covarF, covarFB, meanF, wB
def _get_b(self, f):
return self._diff_lists(list(range(self.mean.shape[0])), f)
@staticmethod
def _diff_lists(list1, list2):
return list(set(list1) - set(list2))
@staticmethod
def _reduce_matrix(matrix, listX, listY):
# Reduce a matrix to the provided list of rows and columns
if len(listX) == 0 or len(listY) == 0:
return
matrix_ = matrix[:, listY[0]: listY[0] + 1]
for i in listY[1:]:
a = matrix[:, i: i + 1]
matrix_ = np.append(matrix_, a, 1)
matrix__ = matrix_[listX[0]: listX[0] + 1, :]
for i in listX[1:]:
a = matrix_[i: i + 1, :]
matrix__ = np.append(matrix__, a, 0)
return matrix__
def _purge_num_err(self, tol):
# Purge violations of inequality constraints (associated with ill-conditioned cov matrix)
i = 0
while True:
flag = False
if i == len(self.w):
break
if abs(sum(self.w[i]) - 1) > tol:
flag = True
else:
for j in range(self.w[i].shape[0]):
if (
self.w[i][j] - self.lB[j] < -tol
or self.w[i][j] - self.uB[j] > tol
):
flag = True
break
if flag is True:
del self.w[i]
del self.ls[i]
del self.g[i]
del self.f[i]
else:
i += 1
def _purge_excess(self):
# Remove violations of the convex hull
i, repeat = 0, False
while True:
if repeat is False:
i += 1
if i == len(self.w) - 1:
break
w = self.w[i]
mu = np.dot(w.T, self.mean)[0, 0]
j, repeat = i + 1, False
while True:
if j == len(self.w):
break
w = self.w[j]
mu_ = np.dot(w.T, self.mean)[0, 0]
if mu < mu_:
del self.w[i]
del self.ls[i]
del self.g[i]
del self.f[i]
repeat = True
break
else:
j += 1
def _golden_section(self, obj, a, b, **kargs):
# Golden section method. Maximum if kargs['minimum']==False is passed
tol, sign, args = 1.0e-9, 1, None
if "minimum" in kargs and kargs["minimum"] is False:
sign = -1
if "args" in kargs:
args = kargs["args"]
numIter = int(ceil(-2.078087 * log(tol / abs(b - a))))
r = 0.618033989
c = 1.0 - r
# Initialize
x1 = r * a + c * b
x2 = c * a + r * b
f1 = sign * obj(x1, *args)
f2 = sign * obj(x2, *args)
# Loop
for i in range(numIter):
if f1 > f2:
a = x1
x1 = x2
f1 = f2
x2 = c * a + r * b
f2 = sign * obj(x2, *args)
else:
b = x2
x2 = x1
f2 = f1
x1 = r * a + c * b
f1 = sign * obj(x1, *args)
if f1 < f2:
return x1, sign * f1
else:
return x2, sign * f2
def _eval_sr(self, a, w0, w1):
# Evaluate SR of the portfolio within the convex combination
w = a * w0 + (1 - a) * w1
b = np.dot(w.T, self.mean)[0, 0]
c = np.dot(np.dot(w.T, self.cov_matrix), w)[0, 0] ** 0.5
return b / c
def _solve(self):
# Compute the turning points,free sets and weights
f, w = self._init_algo()
self.w.append(np.copy(w)) # store solution
self.ls.append(None)
self.g.append(None)
self.f.append(f[:])
while True:
# 1) case a): Bound one free weight
l_in = None
if len(f) > 1:
covarF, covarFB, meanF, wB = self._get_matrices(f)
covarF_inv = np.linalg.inv(covarF)
j = 0
for i in f:
l, bi = self._compute_lambda(
covarF_inv, covarFB, meanF, wB, j, [self.lB[i], self.uB[i]]
)
if _infnone(l) > _infnone(l_in):
l_in, i_in, bi_in = l, i, bi
j += 1
# 2) case b): Free one bounded weight
l_out = None
if len(f) < self.mean.shape[0]:
b = self._get_b(f)
for i in b:
covarF, covarFB, meanF, wB = self._get_matrices(f + [i])
covarF_inv = np.linalg.inv(covarF)
l, bi = self._compute_lambda(
covarF_inv,
covarFB,
meanF,
wB,
meanF.shape[0] - 1,
self.w[-1][i],
)
if (self.ls[-1] is None or l < self.ls[-1]) and l > _infnone(l_out):
l_out, i_out = l, i
if (l_in is None or l_in < 0) and (l_out is None or l_out < 0):
# 3) compute minimum variance solution
self.ls.append(0)
covarF, covarFB, meanF, wB = self._get_matrices(f)
covarF_inv = np.linalg.inv(covarF)
meanF = np.zeros(meanF.shape)
else:
# 4) decide lambda
if _infnone(l_in) > _infnone(l_out):
self.ls.append(l_in)
f.remove(i_in)
w[i_in] = bi_in # set value at the correct boundary
else:
self.ls.append(l_out)
f.append(i_out)
covarF, covarFB, meanF, wB = self._get_matrices(f)
covarF_inv = np.linalg.inv(covarF)
# 5) compute solution vector
wF, g = self._compute_w(covarF_inv, covarFB, meanF, wB)
for i in range(len(f)):
w[f[i]] = wF[i]
self.w.append(np.copy(w)) # store solution
self.g.append(g)
self.f.append(f[:])
if self.ls[-1] == 0:
break
# 6) Purge turning points
self._purge_num_err(10e-10)
self._purge_excess()
def max_sharpe(self):
"""Get the max Sharpe ratio portfolio"""
if not self.w:
self._solve()
# 1) Compute the local max SR portfolio between any two neighbor turning points
w_sr, sr = [], []
for i in range(len(self.w) - 1):
w0 = np.copy(self.w[i])
w1 = np.copy(self.w[i + 1])
kargs = {"minimum": False, "args": (w0, w1)}
a, b = self._golden_section(self._eval_sr, 0, 1, **kargs)
w_sr.append(a * w0 + (1 - a) * w1)
sr.append(b)
# return max(sr), w_sr[sr.index(max(sr))]
self.weights = w_sr[sr.index(max(sr))].reshape((self.n_assets,))
return dict(zip(self.tickers, self.weights))
def min_volatility(self):
"""Get the minimum variance solution"""
if not self.w:
self._solve()
var = []
for w in self.w:
a = np.dot(np.dot(w.T, self.cov_matrix), w)
var.append(a)
# return min(var)**.5, self.w[var.index(min(var))]
self.weights = self.w[var.index(min(var))].reshape((self.n_assets,))
return dict(zip(self.tickers, self.weights))
def efficient_frontier(self, points=100):
"""
Efficiently compute the entire efficient frontier
:param points: rough number of points to evaluate, defaults to 100
:type points: int, optional
:raises ValueError: if weights have not been computed
:return: return list, std list, weight list
:rtype: (float list, float list, np.ndarray list)
"""
if not self.w:
raise ValueError("Weights not yet computed")
mu, sigma, weights = [], [], []
# remove the 1, to avoid duplications
a = np.linspace(0, 1, points // len(self.w))[:-1]
b = list(range(len(self.w) - 1))
for i in b:
w0, w1 = self.w[i], self.w[i + 1]
if i == b[-1]:
# include the 1 in the last iteration
a = np.linspace(0, 1, points // len(self.w))
for j in a:
w = w1 * j + (1 - j) * w0
weights.append(np.copy(w))
mu.append(np.dot(w.T, self.mean)[0, 0])
sigma.append(np.dot(np.dot(w.T, self.cov_matrix), w)[0, 0] ** 0.5)
return mu, sigma, weights
def portfolio_performance(self, verbose=False, risk_free_rate=0.02):
"""
After optimising, calculate (and optionally print) the performance of the optimal
portfolio. Currently calculates expected return, volatility, and the Sharpe ratio.
:param verbose: whether performance should be printed, defaults to False
:type verbose: bool, optional
:param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02
:type risk_free_rate: float, optional
:raises ValueError: if weights have not been calcualted yet
:return: expected return, volatility, Sharpe ratio.
:rtype: (float, float, float)
"""
return base_optimizer.portfolio_performance(
self.expected_returns,
self.cov_matrix,
self.weights,
verbose,
risk_free_rate,
)