Files
PyPortfolioOpt/pypfopt/objective_functions.py
2020-03-15 12:59:01 +00:00

219 lines
7.6 KiB
Python

"""
The ``objective_functions`` module provides optimisation objectives, including the actual
objective functions called by the ``EfficientFrontier`` object's optimisation methods.
These methods are primarily designed for internal use during optimisation (via
scipy.optimize), and each requires a certain signature (which is why they have not been
factored into a class). For obvious reasons, any objective function must accept ``weights``
as an argument, and must also have at least one of ``expected_returns`` or ``cov_matrix``.
Because scipy.optimize only minimises, any objectives that we want to maximise must be
made negative.
Currently implemented:
- negative mean return
- (regularised) negative Sharpe ratio
- (regularised) volatility
- negative quadratic utility
- negative CVaR (expected shortfall). Caveat emptor: this is very buggy.
"""
import numpy as np
import cvxpy as cp
import pandas as pd
def _objective_value(w, obj):
"""
Helper method to return either the value of the objective function
or the objective function as a cvxpy object depending on whether
w is a cvxpy variable or np array.
:param w: weights
:type w: np.ndarray OR cp.Variable
:param obj: objective function expression
:type obj: cp.Expression
:return: value of the objective function OR objective function expression
:rtype: float OR cp.Expression
"""
if isinstance(w, np.ndarray):
if np.isscalar(obj):
return obj
elif np.isscalar(obj.value):
return obj.value
else:
return obj.value.item()
else:
return obj
def portfolio_variance(w, cov_matrix):
"""
Total portfolio variance (i.e square volatility).
:param w: asset weights in the portfolio
:type w: np.ndarray OR cp.Variable
:param cov_matrix: covariance matrix
:type cov_matrix: np.ndarray
:return: value of the objective function OR objective function expression
:rtype: float OR cp.Expression
"""
variance = cp.quad_form(w, cov_matrix)
return _objective_value(w, variance)
def portfolio_return(w, expected_returns, negative=True):
"""
Calculate the (negative) mean return of a portfolio
:param w: asset weights in the portfolio
:type w: np.ndarray OR cp.Variable
:param expected_returns: expected return of each asset
:type expected_returns: np.ndarray
:param negative: whether quantity should be made negative (so we can minimise)
:type negative: boolean
:return: negative mean return
:rtype: float
"""
sign = -1 if negative else 1
mu = sign * (w @ expected_returns)
return _objective_value(w, mu)
def sharpe_ratio(w, expected_returns, cov_matrix, risk_free_rate=0.02, negative=True):
"""
Calculate the (negative) Sharpe ratio of a portfolio
:param w: asset weights in the portfolio
:type w: np.ndarray
:param expected_returns: expected return of each asset
:type expected_returns: np.ndarray
:param cov_matrix: the covariance matrix of asset returns
:type cov_matrix: pd.DataFrame
:param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02.
The period of the risk-free rate should correspond to the
frequency of expected returns.
:type risk_free_rate: float, optional
:param negative: whether quantity should be made negative (so we can minimise)
:type negative: boolean
:return: (negative) Sharpe ratio
:rtype: float
"""
mu = w @ expected_returns
sigma = cp.sqrt(cp.quad_form(w, cov_matrix))
sign = -1 if negative else 1
sharpe = sign * (mu - risk_free_rate) / sigma
return _objective_value(w, sharpe)
def L2_reg(w, gamma=1):
"""
"L2 regularisation", i.e gamma * ||w||^2
:param w: weights
:type w: np.ndarray OR cp.Variable
:param gamma: L2 regularisation parameter, defaults to 1. Increase if you want more
non-negligible weights
:type gamma: float, optional
:return: value of the objective function OR objective function expression
:rtype: float OR cp.Expression
"""
L2_reg = gamma * cp.sum_squares(w)
return _objective_value(w, L2_reg)
def negative_sharpe(
weights, expected_returns, cov_matrix, gamma=0, risk_free_rate=0.02
):
"""
Calculate the negative Sharpe ratio of a portfolio
:param weights: asset weights of the portfolio
:type weights: np.ndarray
:param expected_returns: expected return of each asset
:type expected_returns: pd.Series
:param cov_matrix: the covariance matrix of asset returns
:type cov_matrix: pd.DataFrame
:param gamma: L2 regularisation parameter, defaults to 0. Increase if you want more
non-negligible weights
:type gamma: float, optional
:param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02.
The period of the risk-free rate should correspond to the
frequency of expected returns.
:type risk_free_rate: float, optional
:return: negative Sharpe ratio
:rtype: float
"""
pass
def volatility(weights, cov_matrix, gamma=0):
"""
Calculate the volatility of a portfolio. This is actually a misnomer because
the function returns variance, which is technically the correct objective
function when minimising volatility.
:param weights: asset weights of the portfolio
:type weights: np.ndarray
:param cov_matrix: the covariance matrix of asset returns
:type cov_matrix: pd.DataFrame
:param gamma: L2 regularisation parameter, defaults to 0. Increase if you want more
non-negligible weights
:type gamma: float, optional
:return: portfolio variance
:rtype: float
"""
pass
def negative_quadratic_utility(
weights, expected_returns, cov_matrix, risk_aversion, gamma=0
):
"""
Calculate the (negative) quadratic utility of a portfolio.
:param weights: asset weights of the portfolio
:type weights: np.ndarray
:param expected_returns: expected return of each asset
:type expected_returns: pd.Series
:param cov_matrix: the covariance matrix of asset returns
:type cov_matrix: pd.DataFrame
:param gamma: L2 regularisation parameter, defaults to 0. Increase if you want more
non-negligible weights
:type gamma: float, optional
"""
L2_reg = gamma * (weights ** 2).sum()
pass
# def negative_cvar(weights, returns, s=10000, beta=0.95, random_state=None):
# """
# Calculate the negative CVaR. Though we want the "min CVaR portfolio", we
# actually need to maximise the expected return of the worst q% cases, thus
# we need this value to be negative.
# :param weights: asset weights of the portfolio
# :type weights: np.ndarray
# :param returns: asset returns
# :type returns: pd.DataFrame or np.ndarray
# :param s: number of bootstrap draws, defaults to 10000
# :type s: int, optional
# :param beta: "significance level" (i. 1 - q), defaults to 0.95
# :type beta: float, optional
# :param random_state: seed for random sampling, defaults to None
# :type random_state: int, optional
# :return: negative CVaR
# :rtype: float
# """
# import scipy.stats
# np.random.seed(seed=random_state)
# # Calcualte the returns given the weights
# portfolio_returns = (weights * returns).sum(axis=1)
# # Sample from the historical distribution
# dist = scipy.stats.gaussian_kde(portfolio_returns)
# sample = dist.resample(s)
# # Calculate the value at risk
# var = portfolio_returns.quantile(1 - beta)
# # Mean of all losses worse than the value at risk
# return -sample[sample < var].mean()