Files
PyPortfolioOpt/pypfopt/base_optimizer.py
2020-01-20 20:46:35 +00:00

213 lines
7.9 KiB
Python

"""
The ``base_optimizer`` module houses the parent classes ``BaseOptimizer`` and
``BaseScipyOptimizer``, from which all optimisers will inherit. The later is for
optimisers that use the scipy solver.
Additionally, we define a general utility function ``portfolio_performance`` to
evaluate return and risk for a given set of portfolio weights.
"""
import json
import numpy as np
import pandas as pd
from . import objective_functions
class BaseOptimizer:
"""
Instance variables:
- ``n_assets`` - int
- ``tickers`` - str list
- ``weights`` - np.ndarray
Public methods:
- ``set_weights()`` creates self.weights (np.ndarray) from a weights dict
- ``clean_weights()`` rounds the weights and clips near-zeros.
- ``save_weights_to_file()`` saves the weights to csv, json, or txt.
"""
def __init__(self, n_assets, tickers=None):
"""
:param n_assets: number of assets
:type n_assets: int
:param tickers: name of assets
:type tickers: list
"""
self.n_assets = n_assets
if tickers is None:
self.tickers = list(range(n_assets))
else:
self.tickers = tickers
# Outputs
self.weights = None
def set_weights(self, weights):
"""
Utility function to set weights.
:param weights: {ticker: weight} dictionary
:type weights: dict
"""
self.weights = np.array([weights[ticker] for ticker in self.tickers])
def clean_weights(self, cutoff=1e-4, rounding=5):
"""
Helper method to clean the raw weights, setting any weights whose absolute
values are below the cutoff to zero, and rounding the rest.
:param cutoff: the lower bound, defaults to 1e-4
:type cutoff: float, optional
:param rounding: number of decimal places to round the weights, defaults to 5.
Set to None if rounding is not desired.
:type rounding: int, optional
:return: asset weights
:rtype: dict
"""
if self.weights is None:
raise AttributeError("Weights not yet computed")
clean_weights = self.weights.copy()
clean_weights[np.abs(clean_weights) < cutoff] = 0
if rounding is not None:
if not isinstance(rounding, int) or rounding < 1:
raise ValueError("rounding must be a positive integer")
clean_weights = np.round(clean_weights, rounding)
return dict(zip(self.tickers, clean_weights))
def save_weights_to_file(self, filename="weights.csv"):
"""
Utility method to save weights to a text file.
:param filename: name of file. Should be csv, json, or txt.
:type filename: str
"""
clean_weights = self.clean_weights()
ext = filename.split(".")[1]
if ext == "csv":
pd.Series(clean_weights).to_csv(filename, header=False)
elif ext == "json":
with open(filename, "w") as fp:
json.dump(clean_weights, fp)
else:
with open(filename, "w") as f:
f.write(str(clean_weights))
class BaseScipyOptimizer(BaseOptimizer):
"""
Instance variables:
- ``n_assets`` - int
- ``tickers`` - str list
- ``weights`` - np.ndarray
- ``bounds`` - float tuple OR (float tuple) list
- ``initial_guess`` - np.ndarray
- ``constraints`` - dict list
- ``opt_method`` - the optimisation algorithm to use. Defaults to SLSQP.
"""
def __init__(self, n_assets, tickers=None, weight_bounds=(0, 1)):
"""
:param weight_bounds: minimum and maximum weight of each asset OR single min/max pair
if all identical, defaults to (0, 1). Must be changed to (-1, 1)
for portfolios with shorting.
:type weight_bounds: tuple OR tuple list, optional
"""
super().__init__(n_assets, tickers)
self.bounds = self._make_valid_bounds(weight_bounds)
# Optimisation parameters
self.initial_guess = np.array([1 / self.n_assets] * self.n_assets)
self.constraints = [{"type": "eq", "fun": lambda x: np.sum(x) - 1}]
self.opt_method = "SLSQP"
def _make_valid_bounds(self, test_bounds):
"""
Private method: process input bounds into a form acceptable by scipy.optimize,
and check the validity of said bounds.
:param test_bounds: minimum and maximum weight of each asset OR single min/max pair
if all identical, defaults to (0, 1).
:type test_bounds: tuple OR list/tuple of tuples.
:raises ValueError: if ``test_bounds`` is not a tuple of length two OR a collection
of pairs.
:raises ValueError: if the lower bound is too high
:return: a tuple of bounds, e.g ((0, 1), (0, 1), (0, 1) ...)
:rtype: tuple of tuples
"""
# If it is a collection with the right length, assume they are all bounds.
if len(test_bounds) == self.n_assets and not isinstance(
test_bounds[0], (float, int)
):
bounds = test_bounds
else:
if len(test_bounds) != 2 or not isinstance(test_bounds, tuple):
raise ValueError(
"test_bounds must be a tuple of (lower bound, upper bound) "
"OR collection of bounds for each asset"
)
bounds = (test_bounds,) * self.n_assets
# Ensure lower bound is not too high
if sum((0 if b[0] is None else b[0]) for b in bounds) > 1:
raise ValueError(
"Lower bound is too high. Impossible to construct valid portfolio"
)
return bounds
def portfolio_performance(
expected_returns, cov_matrix, weights, verbose=False, risk_free_rate=0.02
):
"""
After optimising, calculate (and optionally print) the performance of the optimal
portfolio. Currently calculates expected return, volatility, and the Sharpe ratio.
:param expected_returns: expected returns for each asset. Set to None if
optimising for volatility only.
:type expected_returns: pd.Series, list, np.ndarray
:param cov_matrix: covariance of returns for each asset
:type cov_matrix: pd.DataFrame or np.array
:param weights: weights or assets
:type weights: list, np.array or dict, optional
:param verbose: whether performance should be printed, defaults to False
:type verbose: bool, optional
:param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02
:type risk_free_rate: float, optional
:raises ValueError: if weights have not been calcualted yet
:return: expected return, volatility, Sharpe ratio.
:rtype: (float, float, float)
"""
if isinstance(weights, dict):
if isinstance(expected_returns, pd.Series):
tickers = list(expected_returns.index)
elif isinstance(cov_matrix, pd.DataFrame):
tickers = list(cov_matrix.columns)
else:
tickers = list(range(len(expected_returns)))
new_weights = np.zeros(len(tickers))
for i, k in enumerate(tickers):
if k in weights:
new_weights[i] = weights[k]
if new_weights.sum() == 0:
raise ValueError("Weights add to zero, or ticker names don't match")
elif weights is not None:
new_weights = np.asarray(weights)
else:
raise ValueError("Weights is None")
sigma = np.sqrt(objective_functions.volatility(new_weights, cov_matrix))
mu = new_weights.dot(expected_returns)
sharpe = -objective_functions.negative_sharpe(
new_weights, expected_returns, cov_matrix, risk_free_rate=risk_free_rate
)
if verbose:
print("Expected annual return: {:.1f}%".format(100 * mu))
print("Annual volatility: {:.1f}%".format(100 * sigma))
print("Sharpe Ratio: {:.2f}".format(sharpe))
return mu, sigma, sharpe