Files
RAG-Anything/examples/batch_processing_example.py
MinalMahalaShorthillsAI 60f05e04cf improvised version
2025-07-28 10:08:54 +05:30

550 lines
18 KiB
Python

#!/usr/bin/env python
"""
Batch Processing Example for RAG-Anything
This example demonstrates how to use the batch processing capabilities
to process multiple documents in parallel for improved throughput.
Features demonstrated:
- Basic batch processing with BatchParser
- Asynchronous batch processing
- Integration with RAG-Anything
- Error handling and progress tracking
- File filtering and directory processing
"""
import asyncio
import logging
from pathlib import Path
import tempfile
import time
# Add project root directory to Python path
import sys
sys.path.append(str(Path(__file__).parent.parent))
from raganything import RAGAnything, RAGAnythingConfig
from raganything.batch_parser import BatchParser
def create_sample_documents():
"""Create sample documents for batch processing testing"""
temp_dir = Path(tempfile.mkdtemp())
sample_files = []
# Create various document types
documents = {
"document1.txt": "This is a simple text document for testing batch processing.",
"document2.txt": "Another text document with different content.",
"document3.md": """# Markdown Document
## Introduction
This is a markdown document for testing.
### Features
- Markdown formatting
- Code blocks
- Lists
```python
def example():
return "Hello from markdown"
```
""",
"report.txt": """Business Report
Executive Summary:
This report demonstrates batch processing capabilities.
Key Findings:
1. Parallel processing improves throughput
2. Progress tracking enhances user experience
3. Error handling ensures reliability
Conclusion:
Batch processing is essential for large-scale document processing.
""",
"notes.md": """# Meeting Notes
## Date: 2024-01-15
### Attendees
- Alice Johnson
- Bob Smith
- Carol Williams
### Discussion Topics
1. **Batch Processing Implementation**
- Parallel document processing
- Progress tracking
- Error handling strategies
2. **Performance Metrics**
- Target: 100 documents/hour
- Memory usage: < 4GB
- Success rate: > 95%
### Action Items
- [ ] Implement batch processing
- [ ] Add progress bars
- [ ] Test with large document sets
- [ ] Optimize memory usage
### Next Steps
Continue development and testing of batch processing features.
"""
}
# Create files
for filename, content in documents.items():
file_path = temp_dir / filename
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
sample_files.append(str(file_path))
return sample_files, temp_dir
def demonstrate_basic_batch_processing():
"""Demonstrate basic batch processing functionality"""
print("\n" + "=" * 60)
print("BASIC BATCH PROCESSING DEMONSTRATION")
print("=" * 60)
# Create sample documents
sample_files, temp_dir = create_sample_documents()
try:
print(f"Created {len(sample_files)} sample documents in: {temp_dir}")
for file_path in sample_files:
print(f" - {Path(file_path).name}")
# Create batch parser
batch_parser = BatchParser(
parser_type="mineru",
max_workers=3,
show_progress=True,
timeout_per_file=60,
skip_installation_check=True # Skip installation check for demo
)
print(f"\nBatch parser configured:")
print(f" - Parser type: mineru")
print(f" - Max workers: 3")
print(f" - Progress tracking: enabled")
print(f" - Timeout per file: 60 seconds")
# Check supported extensions
supported_extensions = batch_parser.get_supported_extensions()
print(f" - Supported extensions: {supported_extensions}")
# Filter files to supported types
supported_files = batch_parser.filter_supported_files(sample_files)
print(f"\nFile filtering results:")
print(f" - Total files: {len(sample_files)}")
print(f" - Supported files: {len(supported_files)}")
# Process batch
output_dir = temp_dir / "batch_output"
print(f"\nStarting batch processing...")
print(f"Output directory: {output_dir}")
start_time = time.time()
result = batch_parser.process_batch(
file_paths=supported_files,
output_dir=str(output_dir),
parse_method="auto",
recursive=False
)
processing_time = time.time() - start_time
# Display results
print("\n" + "-" * 40)
print("BATCH PROCESSING RESULTS")
print("-" * 40)
print(result.summary())
print(f"Total processing time: {processing_time:.2f} seconds")
print(f"Success rate: {result.success_rate:.1f}%")
if result.successful_files:
print(f"\nSuccessfully processed files:")
for file_path in result.successful_files:
print(f"{Path(file_path).name}")
if result.failed_files:
print(f"\nFailed files:")
for file_path in result.failed_files:
error = result.errors.get(file_path, "Unknown error")
print(f"{Path(file_path).name}: {error}")
return result
except Exception as e:
print(f"❌ Batch processing demonstration failed: {str(e)}")
return None
async def demonstrate_async_batch_processing():
"""Demonstrate asynchronous batch processing"""
print("\n" + "=" * 60)
print("ASYNCHRONOUS BATCH PROCESSING DEMONSTRATION")
print("=" * 60)
# Create sample documents
sample_files, temp_dir = create_sample_documents()
try:
print(f"Processing {len(sample_files)} documents asynchronously...")
# Create batch parser
batch_parser = BatchParser(
parser_type="mineru",
max_workers=2,
show_progress=True,
skip_installation_check=True
)
# Process batch asynchronously
output_dir = temp_dir / "async_output"
start_time = time.time()
result = await batch_parser.process_batch_async(
file_paths=sample_files,
output_dir=str(output_dir),
parse_method="auto",
recursive=False
)
processing_time = time.time() - start_time
# Display results
print("\n" + "-" * 40)
print("ASYNC BATCH PROCESSING RESULTS")
print("-" * 40)
print(result.summary())
print(f"Async processing time: {processing_time:.2f} seconds")
print(f"Success rate: {result.success_rate:.1f}%")
return result
except Exception as e:
print(f"❌ Async batch processing demonstration failed: {str(e)}")
return None
async def demonstrate_rag_integration():
"""Demonstrate batch processing integration with RAG-Anything"""
print("\n" + "=" * 60)
print("RAG-ANYTHING BATCH INTEGRATION DEMONSTRATION")
print("=" * 60)
# Create sample documents
sample_files, temp_dir = create_sample_documents()
try:
# Initialize RAG-Anything with temporary storage
config = RAGAnythingConfig(
working_dir=str(temp_dir / "rag_storage"),
enable_image_processing=True,
enable_table_processing=True,
enable_equation_processing=True,
max_concurrent_files=2
)
rag = RAGAnything(config=config)
print("RAG-Anything initialized with batch processing capabilities")
# Show available batch methods
batch_methods = [method for method in dir(rag) if 'batch' in method.lower()]
print(f"Available batch methods: {batch_methods}")
# Demonstrate batch processing with RAG integration
print(f"\nProcessing {len(sample_files)} documents with RAG integration...")
# Use the RAG-integrated batch processing
try:
# Process documents in batch
result = rag.process_documents_batch(
file_paths=sample_files,
output_dir=str(temp_dir / "rag_batch_output"),
max_workers=2,
show_progress=True
)
print("\n" + "-" * 40)
print("RAG BATCH PROCESSING RESULTS")
print("-" * 40)
print(result.summary())
print(f"Success rate: {result.success_rate:.1f}%")
# Demonstrate batch processing with full RAG integration
print(f"\nProcessing documents with full RAG integration...")
rag_result = await rag.process_documents_with_rag_batch(
file_paths=sample_files[:2], # Process subset for demo
output_dir=str(temp_dir / "rag_full_output"),
max_workers=1,
show_progress=True
)
print("\n" + "-" * 40)
print("FULL RAG INTEGRATION RESULTS")
print("-" * 40)
print(f"Parse result: {rag_result['parse_result'].summary()}")
print(f"RAG processing time: {rag_result['total_processing_time']:.2f} seconds")
print(f"Successfully processed with RAG: {rag_result['successful_rag_files']}")
print(f"Failed RAG processing: {rag_result['failed_rag_files']}")
return rag_result
except Exception as e:
print(f"⚠️ RAG integration demo completed with limitations: {str(e)}")
print("Note: This is expected in environments without full API configuration")
return None
except Exception as e:
print(f"❌ RAG integration demonstration failed: {str(e)}")
return None
def demonstrate_directory_processing():
"""Demonstrate processing entire directories"""
print("\n" + "=" * 60)
print("DIRECTORY PROCESSING DEMONSTRATION")
print("=" * 60)
# Create a directory structure with nested files
temp_dir = Path(tempfile.mkdtemp())
# Create main directory files
main_files = {
"overview.txt": "Main directory overview document",
"readme.md": "# Project README\n\nThis is the main project documentation."
}
# Create subdirectory
sub_dir = temp_dir / "subdirectory"
sub_dir.mkdir()
sub_files = {
"details.txt": "Detailed information in subdirectory",
"notes.md": "# Notes\n\nAdditional notes and information."
}
# Write all files
all_files = []
for filename, content in main_files.items():
file_path = temp_dir / filename
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
all_files.append(str(file_path))
for filename, content in sub_files.items():
file_path = sub_dir / filename
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
all_files.append(str(file_path))
try:
print(f"Created directory structure:")
print(f" Main directory: {temp_dir}")
print(f" Files in main: {list(main_files.keys())}")
print(f" Subdirectory: {sub_dir}")
print(f" Files in sub: {list(sub_files.keys())}")
# Create batch parser
batch_parser = BatchParser(
parser_type="mineru",
max_workers=2,
show_progress=True,
skip_installation_check=True
)
# Process entire directory recursively
print(f"\nProcessing entire directory recursively...")
result = batch_parser.process_batch(
file_paths=[str(temp_dir)], # Pass directory path
output_dir=str(temp_dir / "directory_output"),
parse_method="auto",
recursive=True # Include subdirectories
)
print("\n" + "-" * 40)
print("DIRECTORY PROCESSING RESULTS")
print("-" * 40)
print(result.summary())
print(f"Total files found and processed: {result.total_files}")
print(f"Success rate: {result.success_rate:.1f}%")
if result.successful_files:
print(f"\nSuccessfully processed:")
for file_path in result.successful_files:
relative_path = Path(file_path).relative_to(temp_dir)
print(f"{relative_path}")
return result
except Exception as e:
print(f"❌ Directory processing demonstration failed: {str(e)}")
return None
def demonstrate_error_handling():
"""Demonstrate error handling and recovery"""
print("\n" + "=" * 60)
print("ERROR HANDLING DEMONSTRATION")
print("=" * 60)
temp_dir = Path(tempfile.mkdtemp())
# Create files with various issues
files_with_issues = {
"valid_file.txt": "This is a valid file that should process successfully.",
"empty_file.txt": "", # Empty file
"large_file.txt": "x" * 1000000, # Large file (1MB of 'x')
}
created_files = []
for filename, content in files_with_issues.items():
file_path = temp_dir / filename
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
created_files.append(str(file_path))
# Add a non-existent file to the list
created_files.append(str(temp_dir / "non_existent_file.txt"))
try:
print(f"Testing error handling with {len(created_files)} files:")
for file_path in created_files:
name = Path(file_path).name
exists = Path(file_path).exists()
size = Path(file_path).stat().st_size if exists else 0
print(f" - {name}: {'exists' if exists else 'missing'}, {size} bytes")
# Create batch parser with short timeout for demonstration
batch_parser = BatchParser(
parser_type="mineru",
max_workers=2,
show_progress=True,
timeout_per_file=30, # Short timeout for demo
skip_installation_check=True
)
# Process files and handle errors
result = batch_parser.process_batch(
file_paths=created_files,
output_dir=str(temp_dir / "error_test_output"),
parse_method="auto"
)
print("\n" + "-" * 40)
print("ERROR HANDLING RESULTS")
print("-" * 40)
print(result.summary())
if result.successful_files:
print(f"\nSuccessful files:")
for file_path in result.successful_files:
print(f"{Path(file_path).name}")
if result.failed_files:
print(f"\nFailed files with error details:")
for file_path in result.failed_files:
error = result.errors.get(file_path, "Unknown error")
print(f"{Path(file_path).name}: {error}")
# Demonstrate retry logic
if result.failed_files:
print(f"\nDemonstrating retry logic for {len(result.failed_files)} failed files...")
# Retry only the failed files
retry_result = batch_parser.process_batch(
file_paths=result.failed_files,
output_dir=str(temp_dir / "retry_output"),
parse_method="auto"
)
print(f"Retry results: {retry_result.summary()}")
return result
except Exception as e:
print(f"❌ Error handling demonstration failed: {str(e)}")
return None
async def main():
"""Main demonstration function"""
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
print("RAG-Anything Batch Processing Demonstration")
print("=" * 70)
print("This example demonstrates various batch processing capabilities:")
print(" - Basic batch processing with progress tracking")
print(" - Asynchronous processing for improved performance")
print(" - Integration with RAG-Anything pipeline")
print(" - Directory processing with recursive file discovery")
print(" - Comprehensive error handling and recovery")
results = {}
# Run demonstrations
print("\n🚀 Starting demonstrations...")
# Basic batch processing
results['basic'] = demonstrate_basic_batch_processing()
# Asynchronous processing
results['async'] = await demonstrate_async_batch_processing()
# RAG integration
results['rag'] = await demonstrate_rag_integration()
# Directory processing
results['directory'] = demonstrate_directory_processing()
# Error handling
results['error_handling'] = demonstrate_error_handling()
# Summary
print("\n" + "=" * 70)
print("DEMONSTRATION SUMMARY")
print("=" * 70)
for demo_name, result in results.items():
if result:
if hasattr(result, 'success_rate'):
print(f"{demo_name.upper()}: {result.success_rate:.1f}% success rate")
else:
print(f"{demo_name.upper()}: Completed successfully")
else:
print(f"{demo_name.upper()}: Failed or had limitations")
print("\n📊 Key Features Demonstrated:")
print(" - Parallel document processing with configurable worker counts")
print(" - Real-time progress tracking with tqdm progress bars")
print(" - Comprehensive error handling and reporting")
print(" - File filtering based on supported document types")
print(" - Directory processing with recursive file discovery")
print(" - Asynchronous processing for improved performance")
print(" - Integration with RAG-Anything document pipeline")
print(" - Retry logic for failed documents")
print(" - Detailed processing statistics and timing")
print("\n💡 Best Practices Highlighted:")
print(" - Use appropriate worker counts for your system")
print(" - Enable progress tracking for long-running operations")
print(" - Handle errors gracefully with retry mechanisms")
print(" - Filter files to supported types before processing")
print(" - Set reasonable timeouts for document processing")
print(" - Use skip_installation_check for environments with conflicts")
if __name__ == "__main__":
asyncio.run(main())