Files
SwarmUI/src/BuiltinExtensions/ComfyUIBackend/ExtraNodes/SwarmComfyCommon/SwarmReference.py
Alex "mcmonkey" Goodwin d3bf4e96c0 wave three
2024-06-21 16:04:19 -07:00

56 lines
2.0 KiB
Python

import torch
# This code copied from https://github.com/comfyanonymous/ComfyUI_experiments/blob/master/reference_only.py
# And modified to work better in Swarm generated workflows
class SwarmReferenceOnly:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"reference": ("LATENT",),
"latent": ("LATENT",)
}
}
CATEGORY = "SwarmUI/sampling"
RETURN_TYPES = ("MODEL", "LATENT")
FUNCTION = "reference_only"
def reference_only(self, model, reference, latent):
model_reference = model.clone()
reference["samples"] = torch.nn.functional.interpolate(reference["samples"], size=(latent["samples"].shape[2], latent["samples"].shape[3]), mode="bilinear")
batch = latent["samples"].shape[0] + reference["samples"].shape[0]
def reference_apply(q, k, v, extra_options):
k = k.clone().repeat(1, 2, 1)
offset = 0
if q.shape[0] > batch:
offset = batch
for o in range(0, q.shape[0], batch):
for x in range(1, batch):
k[x + o, q.shape[1]:] = q[o,:]
return q, k, k
model_reference.set_model_attn1_patch(reference_apply)
out_latent = torch.cat((reference["samples"], latent["samples"]))
if "noise_mask" in latent:
mask = latent["noise_mask"]
else:
mask = torch.ones((64,64), dtype=torch.float32, device="cpu")
if len(mask.shape) < 3:
mask = mask.unsqueeze(0)
if mask.shape[0] < latent["samples"].shape[0]:
mask = mask.repeat(latent["samples"].shape[0], 1, 1)
out_mask = torch.zeros((1,mask.shape[1],mask.shape[2]), dtype=torch.float32, device="cpu")
return (model_reference, {"samples": out_latent, "noise_mask": torch.cat((out_mask, mask))})
NODE_CLASS_MAPPINGS = {
"SwarmReferenceOnly": SwarmReferenceOnly,
}