mirror of
https://github.com/HKUDS/VideoRAG.git
synced 2025-05-11 03:54:36 +03:00
179 lines
5.7 KiB
Python
Executable File
179 lines
5.7 KiB
Python
Executable File
import numpy as np
|
|
|
|
from openai import AsyncOpenAI, AsyncAzureOpenAI, APIConnectionError, RateLimitError
|
|
|
|
from tenacity import (
|
|
retry,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
retry_if_exception_type,
|
|
)
|
|
import os
|
|
|
|
from ._utils import compute_args_hash, wrap_embedding_func_with_attrs
|
|
from .base import BaseKVStorage
|
|
|
|
global_openai_async_client = None
|
|
global_azure_openai_async_client = None
|
|
|
|
|
|
def get_openai_async_client_instance():
|
|
global global_openai_async_client
|
|
if global_openai_async_client is None:
|
|
global_openai_async_client = AsyncOpenAI()
|
|
return global_openai_async_client
|
|
|
|
|
|
def get_azure_openai_async_client_instance():
|
|
global global_azure_openai_async_client
|
|
if global_azure_openai_async_client is None:
|
|
global_azure_openai_async_client = AsyncAzureOpenAI()
|
|
return global_azure_openai_async_client
|
|
|
|
|
|
@retry(
|
|
stop=stop_after_attempt(5),
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError)),
|
|
)
|
|
async def openai_complete_if_cache(
|
|
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
|
) -> str:
|
|
openai_async_client = get_openai_async_client_instance()
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
messages = []
|
|
if system_prompt:
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
messages.extend(history_messages)
|
|
messages.append({"role": "user", "content": prompt})
|
|
if hashing_kv is not None:
|
|
args_hash = compute_args_hash(model, messages)
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
if if_cache_return is not None:
|
|
return if_cache_return["return"]
|
|
|
|
response = await openai_async_client.chat.completions.create(
|
|
model=model, messages=messages, **kwargs
|
|
)
|
|
|
|
if hashing_kv is not None:
|
|
await hashing_kv.upsert(
|
|
{args_hash: {"return": response.choices[0].message.content, "model": model}}
|
|
)
|
|
await hashing_kv.index_done_callback()
|
|
return response.choices[0].message.content
|
|
|
|
|
|
async def gpt_4o_complete(
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
) -> str:
|
|
return await openai_complete_if_cache(
|
|
"gpt-4o",
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
async def gpt_4o_mini_complete(
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
) -> str:
|
|
return await openai_complete_if_cache(
|
|
"gpt-4o-mini",
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
|
@retry(
|
|
stop=stop_after_attempt(5),
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError)),
|
|
)
|
|
async def openai_embedding(texts: list[str]) -> np.ndarray:
|
|
openai_async_client = get_openai_async_client_instance()
|
|
response = await openai_async_client.embeddings.create(
|
|
model="text-embedding-3-small", input=texts, encoding_format="float"
|
|
)
|
|
return np.array([dp.embedding for dp in response.data])
|
|
|
|
|
|
@retry(
|
|
stop=stop_after_attempt(3),
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError)),
|
|
)
|
|
async def azure_openai_complete_if_cache(
|
|
deployment_name, prompt, system_prompt=None, history_messages=[], **kwargs
|
|
) -> str:
|
|
azure_openai_client = get_azure_openai_async_client_instance()
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
messages = []
|
|
if system_prompt:
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
messages.extend(history_messages)
|
|
messages.append({"role": "user", "content": prompt})
|
|
if hashing_kv is not None:
|
|
args_hash = compute_args_hash(deployment_name, messages)
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
if if_cache_return is not None:
|
|
return if_cache_return["return"]
|
|
|
|
response = await azure_openai_client.chat.completions.create(
|
|
model=deployment_name, messages=messages, **kwargs
|
|
)
|
|
|
|
if hashing_kv is not None:
|
|
await hashing_kv.upsert(
|
|
{
|
|
args_hash: {
|
|
"return": response.choices[0].message.content,
|
|
"model": deployment_name,
|
|
}
|
|
}
|
|
)
|
|
await hashing_kv.index_done_callback()
|
|
return response.choices[0].message.content
|
|
|
|
|
|
async def azure_gpt_4o_complete(
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
) -> str:
|
|
return await azure_openai_complete_if_cache(
|
|
"gpt-4o",
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
async def azure_gpt_4o_mini_complete(
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
) -> str:
|
|
return await azure_openai_complete_if_cache(
|
|
"gpt-4o-mini",
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
|
@retry(
|
|
stop=stop_after_attempt(3),
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError)),
|
|
)
|
|
async def azure_openai_embedding(texts: list[str]) -> np.ndarray:
|
|
azure_openai_client = get_azure_openai_async_client_instance()
|
|
response = await azure_openai_client.embeddings.create(
|
|
model="text-embedding-3-small", input=texts, encoding_format="float"
|
|
)
|
|
return np.array([dp.embedding for dp in response.data])
|