Files
VideoRAG/videorag/base.py
2025-02-04 01:48:02 +08:00

150 lines
4.0 KiB
Python
Executable File

from dataclasses import dataclass, field
from typing import TypedDict, Union, Literal, Generic, TypeVar
import numpy as np
from ._utils import EmbeddingFunc
@dataclass
class QueryParam:
mode: Literal["local", "global", "naive"] = "global"
only_need_context: bool = False
response_type: str = "Multiple Paragraphs"
level: int = 2
top_k: int = 20
# naive search
naive_max_token_for_text_unit = 12000
# videorag search
only_need_context: bool = False
TextChunkSchema = TypedDict(
"TextChunkSchema",
{"tokens": int, "content": str, "video_segment_id": str, "chunk_order_index": int},
)
SingleCommunitySchema = TypedDict(
"SingleCommunitySchema",
{
"level": int,
"title": str,
"edges": list[list[str, str]],
"nodes": list[str],
"chunk_ids": list[str],
"occurrence": float,
"sub_communities": list[str],
},
)
class CommunitySchema(SingleCommunitySchema):
report_string: str
report_json: dict
T = TypeVar("T")
@dataclass
class StorageNameSpace:
namespace: str
global_config: dict
async def index_start_callback(self):
"""commit the storage operations after indexing"""
pass
async def index_done_callback(self):
"""commit the storage operations after indexing"""
pass
async def query_done_callback(self):
"""commit the storage operations after querying"""
pass
@dataclass
class BaseVectorStorage(StorageNameSpace):
embedding_func: EmbeddingFunc
meta_fields: set = field(default_factory=set)
async def query(self, query: str, top_k: int) -> list[dict]:
raise NotImplementedError
async def upsert(self, data: dict[str, dict]):
"""Use 'content' field from value for embedding, use key as id.
If embedding_func is None, use 'embedding' field from value
"""
raise NotImplementedError
@dataclass
class BaseKVStorage(Generic[T], StorageNameSpace):
async def all_keys(self) -> list[str]:
raise NotImplementedError
async def get_by_id(self, id: str) -> Union[T, None]:
raise NotImplementedError
async def get_by_ids(
self, ids: list[str], fields: Union[set[str], None] = None
) -> list[Union[T, None]]:
raise NotImplementedError
async def filter_keys(self, data: list[str]) -> set[str]:
"""return un-exist keys"""
raise NotImplementedError
async def upsert(self, data: dict[str, T]):
raise NotImplementedError
async def drop(self):
raise NotImplementedError
@dataclass
class BaseGraphStorage(StorageNameSpace):
async def has_node(self, node_id: str) -> bool:
raise NotImplementedError
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
raise NotImplementedError
async def node_degree(self, node_id: str) -> int:
raise NotImplementedError
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
raise NotImplementedError
async def get_node(self, node_id: str) -> Union[dict, None]:
raise NotImplementedError
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> Union[dict, None]:
raise NotImplementedError
async def get_node_edges(
self, source_node_id: str
) -> Union[list[tuple[str, str]], None]:
raise NotImplementedError
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
raise NotImplementedError
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
):
raise NotImplementedError
async def clustering(self, algorithm: str):
raise NotImplementedError
async def community_schema(self) -> dict[str, SingleCommunitySchema]:
"""Return the community representation with report and nodes"""
raise NotImplementedError
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
raise NotImplementedError("Node embedding is not used in nano-graphrag.")