6132 lines
204 KiB
Plaintext
6132 lines
204 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "43b502c1-9548-4580-84ad-1cbac158edb8",
|
||
"metadata": {
|
||
"id": "43b502c1-9548-4580-84ad-1cbac158edb8"
|
||
},
|
||
"source": [
|
||
"# Bonus Unit 1: Fine-Tuning a model for Function-Calling\n",
|
||
"\n",
|
||
"In this tutorial, **we're going to Fine-Tune an LLM for Function Calling.**\n",
|
||
"\n",
|
||
"This notebook is part of the <a href=\"https://www.hf.co/learn/agents-course/unit1/introduction\">Hugging Face Agents Course</a>, a free Course from beginner to expert, where you learn to build Agents.\n",
|
||
"\n",
|
||
"<img src=\"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/share.png\" alt=\"Agent Course\"/>\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "gWR4Rvpmjq5T",
|
||
"metadata": {
|
||
"id": "gWR4Rvpmjq5T"
|
||
},
|
||
"source": [
|
||
"## Exercise Prerequisites 🏗️\n",
|
||
"\n",
|
||
"Before diving into the notebook, you need to:\n",
|
||
"\n",
|
||
"🔲 📚 **Study [What is Function-Calling](https://www.hf.co/learn/agents-course/bonus-unit1/what-is-function-calling) Section**\n",
|
||
"\n",
|
||
"🔲 📚 **Study [Fine-Tune your Model and what are LoRAs](https://www.hf.co/learn/agents-course/bonus-unit1/fine-tuning) Section**"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "1rZXU_1wkEPu",
|
||
"metadata": {
|
||
"id": "1rZXU_1wkEPu"
|
||
},
|
||
"source": [
|
||
"# Step 0: Ask to Access Gemma on Hugging Face\n",
|
||
"\n",
|
||
"<img src=\"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/bonus-unit1/gemma.png\" alt=\"Gemma\"/>\n",
|
||
"\n",
|
||
"\n",
|
||
"To access Gemma on Hugging Face:\n",
|
||
"\n",
|
||
"1. **Make sure you're signed in** to your Hugging Face Account\n",
|
||
"\n",
|
||
"2. Go to https://huggingface.co/google/gemma-2-2b-it\n",
|
||
"\n",
|
||
"3. Click on **Acknowledge license** and fill the form.\n",
|
||
"\n",
|
||
"Alternatively you can use another model, and modify the code accordingly (it can be a good exercise for you to be sure you know how to fine-tune for Function-Calling).\n",
|
||
"\n",
|
||
"You can use for instance:\n",
|
||
"\n",
|
||
"- [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct)\n",
|
||
"\n",
|
||
"- [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "5hjyx9nJlvKG",
|
||
"metadata": {
|
||
"id": "5hjyx9nJlvKG"
|
||
},
|
||
"source": [
|
||
"## Step 1: Set the GPU 💪\n",
|
||
"\n",
|
||
"If you're on Colab:\n",
|
||
"\n",
|
||
"- To **accelerate the fine-tuning training, we'll use a GPU**. To do that, go to `Runtime > Change Runtime type`\n",
|
||
"\n",
|
||
"<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/gpu-step1.jpg\" alt=\"GPU Step 1\"/>\n",
|
||
"\n",
|
||
"- `Hardware Accelerator > GPU`\n",
|
||
"\n",
|
||
"<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/gpu-step2.jpg\" alt=\"GPU Step 2\"/>\n",
|
||
"\n",
|
||
"\n",
|
||
"### Important\n",
|
||
"\n",
|
||
"For this Unit, **with the free-tier of Colab** it will take around **6h to train**.\n",
|
||
"\n",
|
||
"You have three solutions if you want to make it faster:\n",
|
||
"\n",
|
||
"1. Train on your computer if you have GPUs. It might take time but you have less risks of timeout.\n",
|
||
"\n",
|
||
"2. Use a Google Colab Pro that allows you use to A100 GPU (15-20min training).\n",
|
||
"\n",
|
||
"3. Just follow the code to learn how to do it without training."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "5Thjsc9fj6Ej",
|
||
"metadata": {
|
||
"id": "5Thjsc9fj6Ej"
|
||
},
|
||
"source": [
|
||
"## Step 2: Install dependencies 📚\n",
|
||
"\n",
|
||
"We need multiple librairies:\n",
|
||
"\n",
|
||
"- `bitsandbytes` for quantization\n",
|
||
"- `peft`for LoRA adapters\n",
|
||
"- `Transformers`for loading the model\n",
|
||
"- `datasets`for loading and using the fine-tuning dataset\n",
|
||
"- `trl`for the trainer class"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "e63f4962-c644-491e-aa91-50e453e953a4",
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "e63f4962-c644-491e-aa91-50e453e953a4",
|
||
"outputId": "443077a6-7cff-4c46-90ac-bf279300f6ec",
|
||
"tags": []
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"!pip install -q -U bitsandbytes\n",
|
||
"!pip install -q -U peft\n",
|
||
"!pip install -q -U trl\n",
|
||
"!pip install -q -U tensorboardX\n",
|
||
"!pip install -q wandb\n",
|
||
"!pip install -q -U torchvision\n",
|
||
"!pip install -q -U transformers"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "UWNoZzi1urSZ",
|
||
"metadata": {
|
||
"id": "UWNoZzi1urSZ"
|
||
},
|
||
"source": [
|
||
"## Step 3: Create your Hugging Face Token to push your model to the Hub\n",
|
||
"\n",
|
||
"To be able to share your model with the community there are some more steps to follow:\n",
|
||
"\n",
|
||
"1️⃣ (If it's not already done) create an account to HF ➡ https://huggingface.co/join\n",
|
||
"\n",
|
||
"2️⃣ Sign in and then, you need to store your authentication token from the Hugging Face website.\n",
|
||
"\n",
|
||
"- Create a new token (https://huggingface.co/settings/tokens) **with write role**\n",
|
||
"\n",
|
||
"<img src=\"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/bonus-unit1/create_write_token.png\" alt=\"Create HF Token\" width=\"50%\">\n",
|
||
"\n",
|
||
"3️⃣ Store your token as an environment variable under the name \"HF_TOKEN\"\n",
|
||
"- **Be very carefull not to share it with others** !"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "vBAkwg9zu6A1",
|
||
"metadata": {
|
||
"id": "vBAkwg9zu6A1"
|
||
},
|
||
"source": [
|
||
"## Step 4: Import the librairies\n",
|
||
"\n",
|
||
"Don't forget to put your HF token."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "7ad2e4c2-593e-463e-9692-8d674c541d76",
|
||
"metadata": {
|
||
"id": "7ad2e4c2-593e-463e-9692-8d674c541d76",
|
||
"tags": []
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from enum import Enum\n",
|
||
"from functools import partial\n",
|
||
"import pandas as pd\n",
|
||
"import torch\n",
|
||
"import json\n",
|
||
"\n",
|
||
"from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig, set_seed\n",
|
||
"from datasets import load_dataset\n",
|
||
"from trl import SFTConfig, SFTTrainer\n",
|
||
"from peft import LoraConfig, TaskType\n",
|
||
"\n",
|
||
"seed = 42\n",
|
||
"set_seed(seed)\n",
|
||
"\n",
|
||
"import os\n",
|
||
"\n",
|
||
"# Put your HF Token here\n",
|
||
"os.environ['HF_TOKEN']=\"hf_xxxxxxx\" # the token should have write access"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "44f30b2c-2cc0-48e0-91ca-4633e6444105",
|
||
"metadata": {
|
||
"id": "44f30b2c-2cc0-48e0-91ca-4633e6444105"
|
||
},
|
||
"source": [
|
||
"## Step 5: Processing the dataset into inputs\n",
|
||
"\n",
|
||
"In order to train the model, we need to **format the inputs into what we want the model to learn**.\n",
|
||
"\n",
|
||
"For this tutorial, I enhanced a popular dataset for function calling \"NousResearch/hermes-function-calling-v1\" by adding some new **thinking** step computer from **deepseek-ai/DeepSeek-R1-Distill-Qwen-32B**.\n",
|
||
"\n",
|
||
"But in order for the model to learn, we need **to format the conversation correctly**. If you followed Unit 1, you know that going from a list of messages to a prompt is handled by the **chat_template**, or, the default chat_template of gemma-2-2B does not contain tool calls. So we will need to modify it !\n",
|
||
"\n",
|
||
"This is the role of our **preprocess** function. To go from a list of messages, to a prompt that the model can understand.\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "29da85c8-33bf-4864-aed7-733cbe703512",
|
||
"metadata": {
|
||
"id": "29da85c8-33bf-4864-aed7-733cbe703512",
|
||
"tags": []
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"model_name = \"google/gemma-2-2b-it\"\n",
|
||
"dataset_name = \"Jofthomas/hermes-function-calling-thinking-V1\"\n",
|
||
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
||
"\n",
|
||
"tokenizer.chat_template = \"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{{ '<start_of_turn>' + message['role'] + '\\n' + message['content'] | trim + '<end_of_turn><eos>\\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\\n'}}{% endif %}\"\n",
|
||
"\n",
|
||
"\n",
|
||
"def preprocess(sample):\n",
|
||
" messages = sample[\"messages\"]\n",
|
||
" first_message = messages[0]\n",
|
||
"\n",
|
||
" # Instead of adding a system message, we merge the content into the first user message\n",
|
||
" if first_message[\"role\"] == \"system\":\n",
|
||
" system_message_content = first_message[\"content\"]\n",
|
||
" # Merge system content with the first user message\n",
|
||
" messages[1][\"content\"] = system_message_content + \"Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think>\\n\\n\" + messages[1][\"content\"]\n",
|
||
" # Remove the system message from the conversation\n",
|
||
" messages.pop(0)\n",
|
||
"\n",
|
||
" return {\"text\": tokenizer.apply_chat_template(messages, tokenize=False)}\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"dataset = load_dataset(dataset_name)\n",
|
||
"dataset = dataset.rename_column(\"conversations\", \"messages\")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "dc8736d5-d64b-4c5c-9738-be08421d3f95",
|
||
"metadata": {
|
||
"id": "dc8736d5-d64b-4c5c-9738-be08421d3f95"
|
||
},
|
||
"source": [
|
||
"## Step 6: A Dedicated Dataset for This Unit\n",
|
||
"\n",
|
||
"For this Bonus Unit, we created a custom dataset based on [NousResearch/hermes-function-calling-v1](https://huggingface.co/datasets/NousResearch/hermes-function-calling-v1), which is considered a **reference** when it comes to function-calling datasets.\n",
|
||
"\n",
|
||
"While the original dataset is excellent, it does **not** include a **“thinking”** step.\n",
|
||
"\n",
|
||
"In Function-Calling, such a step is optional, but recent work—like the **deepseek** model or the paper [\"Test-Time Compute\"](https://huggingface.co/papers/2408.03314)—suggests that giving an LLM time to “think” before it answers (or in this case, **before** taking an action) can **significantly improve** model performance.\n",
|
||
"\n",
|
||
"I, decided to then compute a subset of this dataset and to give it to [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) in order to compute some thinking tokens `<think>` before any function call. Which resulted in the following dataset :\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "b63d4832-d92e-482d-9fe6-6e9dbfee377a",
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "b63d4832-d92e-482d-9fe6-6e9dbfee377a",
|
||
"outputId": "547d58fc-cf84-4878-f66e-ae817030a251",
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "b2ee958727314c8186af7ee5e5da64aa",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Map: 0%| | 0/3570 [00:00<?, ? examples/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"DatasetDict({\n",
|
||
" train: Dataset({\n",
|
||
" features: ['text'],\n",
|
||
" num_rows: 3213\n",
|
||
" })\n",
|
||
" test: Dataset({\n",
|
||
" features: ['text'],\n",
|
||
" num_rows: 357\n",
|
||
" })\n",
|
||
"})\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"dataset = dataset.map(preprocess, remove_columns=\"messages\")\n",
|
||
"dataset = dataset[\"train\"].train_test_split(0.1)\n",
|
||
"print(dataset)\n",
|
||
"\n",
|
||
"dataset[\"train\"] = dataset[\"train\"].select(range(100))\n",
|
||
"dataset[\"test\"] = dataset[\"test\"].select(range(10))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "67724a23-f298-4247-b002-2cf370b03897",
|
||
"metadata": {
|
||
"id": "67724a23-f298-4247-b002-2cf370b03897"
|
||
},
|
||
"source": [
|
||
"## Step 7: Checking the inputs\n",
|
||
"\n",
|
||
"Let's manually look at what an input looks like !\n",
|
||
"\n",
|
||
"In this example we have :\n",
|
||
"\n",
|
||
"1. A *User message* containing the **necessary information with the list of available tools** inbetween `<tools></tools>` then the user query, here: `\"Can you get me the latest news headlines for the United States?\"`\n",
|
||
"\n",
|
||
"2. An *Assistant message* here called \"model\" to fit the criterias from gemma models containing two new phases, a **\"thinking\"** phase contained in `<think></think>` and an **\"Act\"** phase contained in `<tool_call></<tool_call>`.\n",
|
||
"\n",
|
||
"3. If the model contains a `<tools_call>`, we will append the result of this action in a new **\"Tool\"** message containing a `<tool_response></tool_response>` with the answer from the tool."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "dc60da04-9411-487a-b629-2c59024a20c0",
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "dc60da04-9411-487a-b629-2c59024a20c0",
|
||
"outputId": "8af76a10-5a72-4401-cdf5-ee047fc2d850",
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<bos><start_of_turn>human\n",
|
||
"You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools:<tools> [{'type': 'function', 'function': {'name': 'get_news_headlines', 'description': 'Get the latest news headlines', 'parameters': {'type': 'object', 'properties': {'country': {'type': 'string', 'description': 'The country for which headlines are needed'}}, 'required': ['country']}}}, {'type': 'function', 'function': {'name': 'search_recipes', 'description': 'Search for recipes based on ingredients', 'parameters': {'type': 'object', 'properties': {'ingredients': {'type': 'array', 'items': {'type': 'string'}, 'description': 'The list of ingredients'}}, 'required': ['ingredients']}}}] </tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n",
|
||
"<tool_call>\n",
|
||
"{tool_call}\n",
|
||
"</tool_call>Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think>\n",
|
||
"\n",
|
||
"Can you get me the latest news headlines for the United States?<end_of_turn><eos>\n",
|
||
"<start_of_turn>model\n",
|
||
"<think>Okay, so the user asked for the latest news headlines in the United States. I need to figure out how to respond appropriately using the tools available.\n",
|
||
"\n",
|
||
"Looking at the tools provided, there's a function called get_news_headlines. That seems perfect for this situation. It requires a country code, which the user specified as the United States.\n",
|
||
"\n",
|
||
"Since the user is asking specifically about the US, I'll use the country parameter as 'United States' in the function call. This should fetch the relevant news for them.\n",
|
||
"\n",
|
||
"I should make sure to format the response correctly as a JSON object with the function name and arguments.\n",
|
||
"</think><tool_call>\n",
|
||
"{'name': 'get_news_headlines', 'arguments': {'country': 'United States'}}\n",
|
||
"</tool_call><end_of_turn><eos>\n",
|
||
"<start_of_turn>tool\n",
|
||
"<tool_response>\n",
|
||
"{'headlines': ['US President signs new bill into law', 'Major earthquake hits California', 'NASA announces new Mars mission', 'Tech giant releases new smartphone', 'US economy shows signs of recovery']}\n",
|
||
"</tool_response><end_of_turn><eos>\n",
|
||
"<start_of_turn>model\n",
|
||
"Here are the latest news headlines for the United States:\n",
|
||
"1. US President signs new bill into law\n",
|
||
"2. Major earthquake hits California\n",
|
||
"3. NASA announces new Mars mission\n",
|
||
"4. Tech giant releases new smartphone\n",
|
||
"5. US economy shows signs of recovery<end_of_turn><eos>\n",
|
||
"<start_of_turn>human\n",
|
||
"That's interesting. Can you get me the news for France now?<end_of_turn><eos>\n",
|
||
"<start_of_turn>model\n",
|
||
"<think>Okay, the user initially asked for the latest US news, so I used get_news_headlines with 'United States'. Now the user is asking for France, so I'll call the same function with 'France' as the country. That makes sense because the function is designed for any country.\n",
|
||
"</think><tool_call>\n",
|
||
"{'name': 'get_news_headlines', 'arguments': {'country': 'France'}}\n",
|
||
"</tool_call><end_of_turn><eos>\n",
|
||
"<start_of_turn>tool\n",
|
||
"<tool_response>\n",
|
||
"{'headlines': ['French President announces new environmental policy', 'Paris Fashion Week highlights', 'France wins World Cup qualifier', 'New culinary trend sweeps across France', 'French tech startup raises millions in funding']}\n",
|
||
"</tool_response><end_of_turn><eos>\n",
|
||
"<start_of_turn>model\n",
|
||
"Here are the latest news headlines for France:\n",
|
||
"1. French President announces new environmental policy\n",
|
||
"2. Paris Fashion Week highlights\n",
|
||
"3. France wins World Cup qualifier\n",
|
||
"4. New culinary trend sweeps across France\n",
|
||
"5. French tech startup raises millions in funding<end_of_turn><eos>\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Let's look at how we formatted the dataset\n",
|
||
"print(dataset[\"train\"][8][\"text\"])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "53a48281-2346-4dfb-ad60-cad85129ec9b",
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"id": "53a48281-2346-4dfb-ad60-cad85129ec9b",
|
||
"outputId": "e16c07f9-8bbf-4c82-d2d3-41d96a95ab2e",
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<pad>\n",
|
||
"<eos>\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Sanity check\n",
|
||
"print(tokenizer.pad_token)\n",
|
||
"print(tokenizer.eos_token)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d6864b36-6033-445a-b6e2-b6bb02e38e26",
|
||
"metadata": {
|
||
"id": "d6864b36-6033-445a-b6e2-b6bb02e38e26"
|
||
},
|
||
"source": [
|
||
"## Step 8: Let's Modify the Tokenizer\n",
|
||
"\n",
|
||
"Indeed, as we saw in Unit 1, the tokenizer splits text into sub-words by default. This is **not** what we want for our new special tokens!\n",
|
||
"\n",
|
||
"While we segmented our example using `<think>`, `<tool_call>`, and `<tool_response>`, the tokenizer does **not** yet treat them as whole tokens—it still tries to break them down into smaller pieces. To ensure the model correctly interprets our new format, we must **add these tokens** to our tokenizer.\n",
|
||
"\n",
|
||
"Additionally, since we changed the `chat_template` in our **preprocess** function to format conversations as messages within a prompt, we also need to modify the `chat_template` in the tokenizer to reflect these changes."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "833ba5d6-4c1e-4689-9fed-22cc03d2a63a",
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 754,
|
||
"referenced_widgets": [
|
||
"54fc2d9962de4ffda0500a01e112b58a",
|
||
"8e70cccb0fb04a43b3c6ab234bcae9a8",
|
||
"f2d87447fe8448c7baff656c540620e6",
|
||
"5f438fbbfb60436faf79662e81092154",
|
||
"197619158cd247649eac3722284c8d19",
|
||
"1d104fe8612f45e4810bbed7e3540330",
|
||
"d62425b0d0ea497ead2cd981eaa61c7e",
|
||
"2828b2455ec44143a5739c8e8207fb9b",
|
||
"03b839beea6a4f6b8d9005491146615d",
|
||
"0db5d5c516d7479ebf7603093f9e1e99",
|
||
"654fd18a9e59415e9dd314dc2f94a654",
|
||
"deba87fc28db4f78b58fc1e456fea335",
|
||
"f06414fa35b64ff588511796c9b51d1f",
|
||
"21cf377576154ffeb028f4ae3b3503d5",
|
||
"5c8fa13e559942849a61d9480be730bd",
|
||
"fae24e4a14814c7ebef30b422c2d3652",
|
||
"1981ff353e494735be4706a76053c24a",
|
||
"9a8b33ef0f6c446496cc7dae07da321c",
|
||
"2b8c9e43da4e4e008a2a2b06e6f3106e",
|
||
"62f3a32c4f484dd6899ba5d6ffbaca11",
|
||
"1e271fcb92a14680b84c33cb7c28f9c0",
|
||
"da543c28b9e44723b019220de8427b5e",
|
||
"ce3c69ec86224ffea8c46deb20831bb7",
|
||
"3bb2805fcf0441089c0f4789e28b072d",
|
||
"bc6e638133f545ff8d54f767de0cb35a",
|
||
"6e1393f9f39a4b3cb94753c883b1bbf7",
|
||
"a76145e51f7544fdabd23198baf318c4",
|
||
"eedc1213dd604bbe827dcec617fdae34",
|
||
"f73f91bb567a48f890ba0827b7ed321f",
|
||
"a8edc3a5b0d9422b8e2e63d5564cfdc9",
|
||
"e08c970bbf4540a89533a43f719f68e4",
|
||
"fe30dac330db4fde94af1c54c84a1be8",
|
||
"4cfce958cf5445129ab6281784664038",
|
||
"71ba28670e8d4583b66b1c1587cdbce1",
|
||
"4349fab6f16343cb8955367f6fbc4a43",
|
||
"6296f0c3ac5647e9b9cbc7c8212a2b35",
|
||
"c6d97ccbecb0407f89ef4469f3874e74",
|
||
"ccabb079b6fd466fb877a018aebf793c",
|
||
"0ff4d8414af94af59628b0417a40cc7d",
|
||
"534a5dc9cd7e475db2be613849959fc7",
|
||
"b821e13722e24feb941fa31a604a85e9",
|
||
"91c21b2b127640e195f2e7c7256b5a0e",
|
||
"1296a8a4baea4faabc62a42b2ca1a53a",
|
||
"13b49790234c4d1aa8fe9b532fcf95bf",
|
||
"e1ef7211c5554b2f8fdd39f2f846d2d9",
|
||
"9ac674eeba0542e7b4e28a13e90ce652",
|
||
"cc4993f1af6b4f2685ecbced238b8913",
|
||
"5ec98ede3fbf4c64843b935ce3ad28a7",
|
||
"bdbd9e7e1d674edeab47e3595f6af4f8",
|
||
"2eb5230a43e84790b0392db58157b0f1",
|
||
"26bd63db6a384c12b7d42bf95ca1d1bc",
|
||
"6f4e106bb5b44f398a1fe4ac588f6cca",
|
||
"0c881b9322624d70bb2c5147a5422633",
|
||
"ec8ecb8bdee4435fbc97d73863ebd9f8",
|
||
"1af481e6544a4fa386815218461cd5c3",
|
||
"2f73c87217c84bd293a5ea5b4aba0ae5",
|
||
"6883c5e46d3948649488d3e9f81ddb9c",
|
||
"d0498872e00f4644847e073c6000a111",
|
||
"482f477cc2354d9da6a8c2932bb73e98",
|
||
"1c810f5364544762a3093e1a0a9c1e5b",
|
||
"681019ca1d084d9692f5085d1df520ae",
|
||
"b1bb9bcec30144a380fa4fe440c41d7c",
|
||
"425fe267a38748ea9670a0996b802bdc",
|
||
"95eebbfed6fc41d6a8c668abe1608756",
|
||
"51b42c72bc2b428fbc0389bfd4d9e598",
|
||
"611a6d951d2a42b9b650496612cfd484",
|
||
"a893802af41d4400b35b9cb71add1387",
|
||
"45e867ccde7d4b5bb4ed4861d723a758",
|
||
"f5e196c908e7491982773d3231fff3e6",
|
||
"68baf2700f614be288bf35e54d207096",
|
||
"001b32600fdd418bb30c6b5ff85e269c",
|
||
"2bcef869f1814a04bbbed73df7a9ab24",
|
||
"e3bd52cd621e4d2196e94327324722c4",
|
||
"1e9d8fccba9a468291ffe271b3497830",
|
||
"d1d376228c334c5999143b905e234ffc",
|
||
"fc9a32511862493e980682b6ff5044bb",
|
||
"538f6a3c632f431fa9d16ab17383a602"
|
||
]
|
||
},
|
||
"id": "833ba5d6-4c1e-4689-9fed-22cc03d2a63a",
|
||
"outputId": "3138107e-a2cd-447d-ee69-e07e401a1540",
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "bedabbdf4cf44865a83fc9702391c298",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"The new embeddings will be initialized from a multivariate normal distribution that has old embeddings' mean and covariance. As described in this article: https://nlp.stanford.edu/~johnhew/vocab-expansion.html. To disable this, use `mean_resizing=False`\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Gemma2ForCausalLM(\n",
|
||
" (model): Gemma2Model(\n",
|
||
" (embed_tokens): Embedding(256008, 2304, padding_idx=0)\n",
|
||
" (layers): ModuleList(\n",
|
||
" (0-25): 26 x Gemma2DecoderLayer(\n",
|
||
" (self_attn): Gemma2Attention(\n",
|
||
" (q_proj): Linear(in_features=2304, out_features=2048, bias=False)\n",
|
||
" (k_proj): Linear(in_features=2304, out_features=1024, bias=False)\n",
|
||
" (v_proj): Linear(in_features=2304, out_features=1024, bias=False)\n",
|
||
" (o_proj): Linear(in_features=2048, out_features=2304, bias=False)\n",
|
||
" (rotary_emb): Gemma2RotaryEmbedding()\n",
|
||
" )\n",
|
||
" (mlp): Gemma2MLP(\n",
|
||
" (gate_proj): Linear(in_features=2304, out_features=9216, bias=False)\n",
|
||
" (up_proj): Linear(in_features=2304, out_features=9216, bias=False)\n",
|
||
" (down_proj): Linear(in_features=9216, out_features=2304, bias=False)\n",
|
||
" (act_fn): PytorchGELUTanh()\n",
|
||
" )\n",
|
||
" (input_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
||
" (pre_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
||
" (post_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
||
" (post_attention_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
||
" )\n",
|
||
" )\n",
|
||
" (norm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
||
" )\n",
|
||
" (lm_head): Linear(in_features=2304, out_features=256008, bias=False)\n",
|
||
")"
|
||
]
|
||
},
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"class ChatmlSpecialTokens(str, Enum):\n",
|
||
" tools = \"<tools>\"\n",
|
||
" eotools = \"</tools>\"\n",
|
||
" think = \"<think>\"\n",
|
||
" eothink = \"</think>\"\n",
|
||
" tool_call=\"<tool_call>\"\n",
|
||
" eotool_call=\"</tool_call>\"\n",
|
||
" tool_response=\"<tool_reponse>\"\n",
|
||
" eotool_response=\"</tool_reponse>\"\n",
|
||
" pad_token = \"<pad>\"\n",
|
||
" eos_token = \"<eos>\"\n",
|
||
" @classmethod\n",
|
||
" def list(cls):\n",
|
||
" return [c.value for c in cls]\n",
|
||
"\n",
|
||
"tokenizer = AutoTokenizer.from_pretrained(\n",
|
||
" model_name,\n",
|
||
" pad_token=ChatmlSpecialTokens.pad_token.value,\n",
|
||
" additional_special_tokens=ChatmlSpecialTokens.list()\n",
|
||
" )\n",
|
||
"tokenizer.chat_template = \"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{{ '<start_of_turn>' + message['role'] + '\\n' + message['content'] | trim + '<end_of_turn><eos>\\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\\n'}}{% endif %}\"\n",
|
||
"\n",
|
||
"model = AutoModelForCausalLM.from_pretrained(model_name,\n",
|
||
" attn_implementation='eager',\n",
|
||
" device_map=\"auto\")\n",
|
||
"model.resize_token_embeddings(len(tokenizer))\n",
|
||
"model.to(torch.bfloat16)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "X6DBY8AqxFLL",
|
||
"metadata": {
|
||
"id": "X6DBY8AqxFLL"
|
||
},
|
||
"source": [
|
||
"## Step 9: Let's configure the LoRA\n",
|
||
"\n",
|
||
"This is we are going to define the parameter of our adapter. Those are the most important parameters in LoRA as they define the size and importance of the adapters we are training."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "482d36ab-e326-4fd7-bc59-425abcca55e7",
|
||
"metadata": {
|
||
"id": "482d36ab-e326-4fd7-bc59-425abcca55e7",
|
||
"tags": []
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from peft import LoraConfig\n",
|
||
"\n",
|
||
"# TODO: Configure LoRA parameters\n",
|
||
"# r: rank dimension for LoRA update matrices (smaller = more compression)\n",
|
||
"rank_dimension = 16\n",
|
||
"# lora_alpha: scaling factor for LoRA layers (higher = stronger adaptation)\n",
|
||
"lora_alpha = 64\n",
|
||
"# lora_dropout: dropout probability for LoRA layers (helps prevent overfitting)\n",
|
||
"lora_dropout = 0.05\n",
|
||
"\n",
|
||
"peft_config = LoraConfig(r=rank_dimension,\n",
|
||
" lora_alpha=lora_alpha,\n",
|
||
" lora_dropout=lora_dropout,\n",
|
||
" target_modules=[\"gate_proj\",\"q_proj\",\"lm_head\",\"o_proj\",\"k_proj\",\"embed_tokens\",\"down_proj\",\"up_proj\",\"v_proj\"], # wich layer in the transformers do we target ?\n",
|
||
" task_type=TaskType.CAUSAL_LM)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "zdDR9hzgxPu2",
|
||
"metadata": {
|
||
"id": "zdDR9hzgxPu2"
|
||
},
|
||
"source": [
|
||
"## Step 10: Let's define the Trainer and the Fine-Tuning hyperparameters\n",
|
||
"\n",
|
||
"In this step, we define the Trainer, the class that we use to fine-tune our model and the hyperparameters."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "3598b688-5a6f-437f-95ac-4794688cd38f",
|
||
"metadata": {
|
||
"id": "3598b688-5a6f-437f-95ac-4794688cd38f",
|
||
"tags": []
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"username=\"Jofthomas\"# REPLCAE with your Hugging Face username\n",
|
||
"output_dir = \"gemma-2-2B-it-thinking-function_calling-V0\" # The directory where the trained model checkpoints, logs, and other artifacts will be saved. It will also be the default name of the model when pushed to the hub if not redefined later.\n",
|
||
"per_device_train_batch_size = 1\n",
|
||
"per_device_eval_batch_size = 1\n",
|
||
"gradient_accumulation_steps = 4\n",
|
||
"logging_steps = 5\n",
|
||
"learning_rate = 1e-4 # The initial learning rate for the optimizer.\n",
|
||
"\n",
|
||
"max_grad_norm = 1.0\n",
|
||
"num_train_epochs=1\n",
|
||
"warmup_ratio = 0.1\n",
|
||
"lr_scheduler_type = \"cosine\"\n",
|
||
"max_seq_length = 1500\n",
|
||
"\n",
|
||
"training_arguments = SFTConfig(\n",
|
||
" output_dir=output_dir,\n",
|
||
" per_device_train_batch_size=per_device_train_batch_size,\n",
|
||
" per_device_eval_batch_size=per_device_eval_batch_size,\n",
|
||
" gradient_accumulation_steps=gradient_accumulation_steps,\n",
|
||
" save_strategy=\"no\",\n",
|
||
" eval_strategy=\"epoch\",\n",
|
||
" logging_steps=logging_steps,\n",
|
||
" learning_rate=learning_rate,\n",
|
||
" max_grad_norm=max_grad_norm,\n",
|
||
" weight_decay=0.1,\n",
|
||
" warmup_ratio=warmup_ratio,\n",
|
||
" lr_scheduler_type=lr_scheduler_type,\n",
|
||
" report_to=\"tensorboard\",\n",
|
||
" bf16=True,\n",
|
||
" hub_private_repo=False,\n",
|
||
" push_to_hub=False,\n",
|
||
" num_train_epochs=num_train_epochs,\n",
|
||
" gradient_checkpointing=True,\n",
|
||
" gradient_checkpointing_kwargs={\"use_reentrant\": False},\n",
|
||
" packing=True,\n",
|
||
" max_seq_length=max_seq_length,\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "59TTqmW2xmV2",
|
||
"metadata": {
|
||
"id": "59TTqmW2xmV2"
|
||
},
|
||
"source": [
|
||
"As Trainer, we use the `SFTTrainer` which is a Supervised Fine-Tuning Trainer."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "ba0366b5-c9d0-4f7e-97e0-1f964cfad147",
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 263,
|
||
"referenced_widgets": [
|
||
"e3fe61834c3e49a3895212a336776f9d",
|
||
"472cbf91b24f46829960d68e2316c417",
|
||
"bd746ea2e46a491e954ac6f32fb0e45b",
|
||
"b1542891fc6243d98d51981dd0584bdf",
|
||
"b2e16ad7540d4760b28f3a8c419905f8",
|
||
"f2157c83879046a29b72613bce9de56e",
|
||
"3b07ec7f4d024b61abe94c8adeebed55",
|
||
"e6f810bd430245b190ee932554cca05c",
|
||
"952893c941c346c2aedcd9358859a3b9",
|
||
"d36e7dd4b9dc497faa6e8f63843a738f",
|
||
"f469ec8c79ac476c82a5e228f347bffa",
|
||
"e9de72aadc5743a2b56537b3ad035461",
|
||
"57d137229091486dbf0e4b7dd6dce98a",
|
||
"4d006dc72b2b45b58caf4d398c3756b8",
|
||
"36bbd4bd563a4053a7af8532300253b7",
|
||
"cacc3c3a10c64b338866a8e42201e44c",
|
||
"b4c43d908bd64d9bbdb488dac46d2e45",
|
||
"96691a6287ef401582a2a1744a4940c4",
|
||
"328fa6d902bd46bbb0ecdc7404a13e8c",
|
||
"f375fed157034dfcbd28744027d77eba",
|
||
"33ec043a635f4e99b67cd6f7e6fc6193",
|
||
"39fee7a249c146d1a166e58755c1cda8",
|
||
"2ccddb85840c4981ae089ae4c74a2de6",
|
||
"89eee480405a416ba0edf097423724b9",
|
||
"56e8079c374a4f3f9af5ef96a73f2955",
|
||
"3aeb28bc164444d7afb7bf7435a001f2",
|
||
"1ead218e71614374909b92fda097fd42",
|
||
"822bea0ac84d4ff29d984bf5f5d2c3a2",
|
||
"ecef440c871b4daba34661a1ddba6b0c",
|
||
"e633387b1640461e82617c1702ee82f5",
|
||
"26484831a87a4b489e1288ea71ea7767",
|
||
"9f8d631358e240f982e31171d1bd9f26",
|
||
"a0c7029819414c5dacefed93194cd763",
|
||
"f4a01e54ec53475585eaa88b3a272b4b",
|
||
"63c269b37eed4d348f9ce24eef15fc15",
|
||
"a89230859593424e960047a96977c6b8",
|
||
"91163fcffc60438cb39b0eb586dac418",
|
||
"89033e9c0dd249db9dc9a3b1e215dded",
|
||
"73c9d510c8754f2ea21adf318e35bc8e",
|
||
"0fe7751f55134695afb44bf8673dd4d9",
|
||
"f7dd34e15348462297564f0e6e0b568d",
|
||
"537e188c000041fea6adf26f2255d738",
|
||
"39fff32b9756437581228465165a3115",
|
||
"4f75329d3e8d4cc38a405c1c4cc51d70",
|
||
"8bbe22288edf4a06b2c56952fd81d5e7",
|
||
"298f092855f14af79ec2eda792732810",
|
||
"2e6392b95f8a48568a89780adf76387f",
|
||
"55e72b7f262b4f57a6abb1c9f01c8de2",
|
||
"9fbca7fa0d6b4fff910b806a97fa7718",
|
||
"a385bba49b514ab386cb5f4cbb01821f",
|
||
"78a34eb9cd534c3d84c8f22d3c53c88f",
|
||
"cee71fbbf8a04b3bb64b96e7fa2b0b0e",
|
||
"0a0bc95f445948f486fbce865a4642f2",
|
||
"b782092e2282488ba86f85eebe697603",
|
||
"f7ba9e0f4e64484a82374bb5f1d12b15",
|
||
"39c0963803c74ebab07cec20e10d0184",
|
||
"46b69fb951af44f99232f459daa4f103",
|
||
"3e23b4c5848843fcb44dc0ae2f157d66",
|
||
"c9f86634a6bf4e49a902e3d42e67f1bd",
|
||
"03b8a027c56f4b52a3e54f57bb5bb526",
|
||
"58a18918bae34aca8ec73ae89fd5bc24",
|
||
"fd6e1776cbcd4f7b96ec6d9754eb2c83",
|
||
"b5121cada3514b67a9c533e7468b3058",
|
||
"bf70daf78057419b8a78af75a093a3dd",
|
||
"e0b3b3c072be44de8e0a2dae91598aa6",
|
||
"4e21f1bd903443a89dea32bb3f3c26a9"
|
||
]
|
||
},
|
||
"id": "ba0366b5-c9d0-4f7e-97e0-1f964cfad147",
|
||
"outputId": "5602ad04-17c4-431b-e20d-7f0d0c7fd24e",
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/home/user/miniconda/lib/python3.9/site-packages/peft/tuners/tuners_utils.py:543: UserWarning: Model with `tie_word_embeddings=True` and the tied_target_modules=['lm_head'] are part of the adapter. This can lead to complications, for example when merging the adapter or converting your model to formats other than safetensors. See for example https://github.com/huggingface/peft/issues/2018.\n",
|
||
" warnings.warn(\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "be2be97d4aa64b23beaf316024229a3b",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Applying chat template to train dataset: 0%| | 0/100 [00:00<?, ? examples/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "f7416500f850456792cacf42656df46a",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Tokenizing train dataset: 0%| | 0/100 [00:00<?, ? examples/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "482ded5a74484b5f8d8907b4a886f946",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Packing train dataset: 0%| | 0/100 [00:00<?, ? examples/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "3f59849c47ef42d0ac295296a4ad0a91",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Applying chat template to eval dataset: 0%| | 0/10 [00:00<?, ? examples/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "b1acbd0589c54b5887ea7b3e8b872057",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Tokenizing eval dataset: 0%| | 0/10 [00:00<?, ? examples/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "24a119a8500146f28f3d866ed69f7161",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Packing eval dataset: 0%| | 0/10 [00:00<?, ? examples/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer = SFTTrainer(\n",
|
||
" model=model,\n",
|
||
" args=training_arguments,\n",
|
||
" train_dataset=dataset[\"train\"],\n",
|
||
" eval_dataset=dataset[\"test\"],\n",
|
||
" processing_class=tokenizer,\n",
|
||
" peft_config=peft_config,\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "MtHjukK9xviB",
|
||
"metadata": {
|
||
"id": "MtHjukK9xviB"
|
||
},
|
||
"source": [
|
||
"Here, we launch the training 🔥. Perfect time for you to pause and grab a coffee ☕."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"id": "9e2df2e9-a82b-4540-aa89-1b40b70a7781",
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 92
|
||
},
|
||
"id": "9e2df2e9-a82b-4540-aa89-1b40b70a7781",
|
||
"outputId": "113322de-8f42-4285-d58f-8641e6daf295",
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"\n",
|
||
" <div>\n",
|
||
" \n",
|
||
" <progress value='12' max='12' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
||
" [12/12 00:24, Epoch 1/1]\n",
|
||
" </div>\n",
|
||
" <table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: left;\">\n",
|
||
" <th>Epoch</th>\n",
|
||
" <th>Training Loss</th>\n",
|
||
" <th>Validation Loss</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1.236800</td>\n",
|
||
" <td>1.240833</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table><p>"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.HTML object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/home/user/miniconda/lib/python3.9/site-packages/peft/utils/save_and_load.py:230: UserWarning: Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`.\n",
|
||
" warnings.warn(\"Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`.\")\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer.train()\n",
|
||
"trainer.save_model()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "1d7ea3ab-7c8c-47ad-acd2-99fbe5b68393",
|
||
"metadata": {
|
||
"id": "1d7ea3ab-7c8c-47ad-acd2-99fbe5b68393",
|
||
"tags": []
|
||
},
|
||
"source": [
|
||
"## Step 11: Let's push the Model and the Tokenizer to the Hub\n",
|
||
"\n",
|
||
"Let's push our model and out tokenizer to the Hub ! The model will be pushed under your username + the output_dir that we specified earlier."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"id": "370af020-9319-4ff7-bea1-2842a4847caa",
|
||
"metadata": {
|
||
"id": "370af020-9319-4ff7-bea1-2842a4847caa",
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "00c6c786a8014635952d94bb505923f1",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"events.out.tfevents.1739887545.r-jofthomas-fttest-kff5bkw4-24c03-yhiku: 0%| | 0.00/6.88k [00:00<?, …"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "6945a9a4ba05483e94061404480e2d4f",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"training_args.bin: 0%| | 0.00/5.62k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "d56b088f78144a3388749363ee944194",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"tokenizer.json: 0%| | 0.00/34.4M [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "eb6e24851a254a1b81a2032541453ec0",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"adapter_model.safetensors: 0%| | 0.00/2.48G [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "6f268fc2255c46ac99cf15212035009c",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Upload 4 LFS files: 0%| | 0/4 [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"CommitInfo(commit_url='https://huggingface.co/Jofthomas/gemma-2-2B-it-thinking-function_calling-V0/commit/74db7b9fd8e5c6591db5851db70069bf3016fe50', commit_message='Jofthomas/gemma-2-2B-it-thinking-function_calling-V0', commit_description='', oid='74db7b9fd8e5c6591db5851db70069bf3016fe50', pr_url=None, repo_url=RepoUrl('https://huggingface.co/Jofthomas/gemma-2-2B-it-thinking-function_calling-V0', endpoint='https://huggingface.co', repo_type='model', repo_id='Jofthomas/gemma-2-2B-it-thinking-function_calling-V0'), pr_revision=None, pr_num=None)"
|
||
]
|
||
},
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"trainer.push_to_hub(f\"{username}/{output_dir}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "83a443ce-5072-4777-8621-cd4faf840410",
|
||
"metadata": {
|
||
"id": "83a443ce-5072-4777-8621-cd4faf840410"
|
||
},
|
||
"source": [
|
||
"Since we also modified the **chat_template** Which is contained in the tokenizer, let's also push the tokenizer with the model."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "9d9a86b3-f23d-4060-a97f-b868a7c38c36",
|
||
"metadata": {
|
||
"id": "9d9a86b3-f23d-4060-a97f-b868a7c38c36",
|
||
"outputId": "2726291c-5720-473e-ed92-e4f425f82bae",
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "1a84942726104c7a881b352df849997e",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"README.md: 0%| | 0.00/1.53k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"CommitInfo(commit_url='https://huggingface.co/Jofthomas/gemma-2-2B-it-thinking-function_calling-V0/commit/5eae94697866df5f9f52bc7c7be677f100a7f339', commit_message='Upload tokenizer', commit_description='', oid='5eae94697866df5f9f52bc7c7be677f100a7f339', pr_url=None, repo_url=RepoUrl('https://huggingface.co/Jofthomas/gemma-2-2B-it-thinking-function_calling-V0', endpoint='https://huggingface.co', repo_type='model', repo_id='Jofthomas/gemma-2-2B-it-thinking-function_calling-V0'), pr_revision=None, pr_num=None)"
|
||
]
|
||
},
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"tokenizer.eos_token = \"<eos>\"\n",
|
||
"# push the tokenizer to hub ( replace with your username and your previously specified\n",
|
||
"tokenizer.push_to_hub(f\"{username}/{output_dir}\", token=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "76d275ce-a3e6-4d30-8d8c-0ee274de5370",
|
||
"metadata": {
|
||
"id": "76d275ce-a3e6-4d30-8d8c-0ee274de5370"
|
||
},
|
||
"source": [
|
||
"## Step 12: Let's now test our model !\n",
|
||
"\n",
|
||
"To so, we will :\n",
|
||
"\n",
|
||
"1. Load the adapter from the hub !\n",
|
||
"2. Load the base model : **\"google/gemma-2-2b-it\"** from the hub\n",
|
||
"3. Resize the model to with the new tokens we introduced !"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "56b89825-70ac-42c1-934c-26e2d54f3b7b",
|
||
"metadata": {
|
||
"colab": {
|
||
"referenced_widgets": [
|
||
"390c54434b6448b988ce015eeafe34c9",
|
||
"35b2fe2d357b46488ccef710f2a9bfd7",
|
||
"9c313149d4324bdaa9c8ddc373964d18"
|
||
]
|
||
},
|
||
"id": "56b89825-70ac-42c1-934c-26e2d54f3b7b",
|
||
"outputId": "a4cd00b8-61fa-4522-d563-c4ef7e18807d",
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "4c2546e08a424179af511d8abe3c1c7d",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"adapter_config.json: 0%| | 0.00/829 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "e08b968b1648474e812283fa7c4358a9",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "bec06c857d234a7ba0593a92272ef764",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"tokenizer_config.json: 0%| | 0.00/47.9k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "5608d64f66fa43ef8c162a6e50fb5359",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"tokenizer.json: 0%| | 0.00/34.4M [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "8fd1767e3a8249f5becdab5ca1ccea89",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"special_tokens_map.json: 0%| | 0.00/605 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "a6173c485914437cb0147583215e8d84",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"adapter_model.safetensors: 0%| | 0.00/2.48G [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"PeftModelForCausalLM(\n",
|
||
" (base_model): LoraModel(\n",
|
||
" (model): Gemma2ForCausalLM(\n",
|
||
" (model): Gemma2Model(\n",
|
||
" (embed_tokens): lora.Embedding(\n",
|
||
" (base_layer): Embedding(256006, 2304, padding_idx=0)\n",
|
||
" (lora_dropout): ModuleDict(\n",
|
||
" (default): Dropout(p=0.05, inplace=False)\n",
|
||
" )\n",
|
||
" (lora_A): ModuleDict()\n",
|
||
" (lora_B): ModuleDict()\n",
|
||
" (lora_embedding_A): ParameterDict( (default): Parameter containing: [torch.cuda.BFloat16Tensor of size 16x256006 (cuda:0)])\n",
|
||
" (lora_embedding_B): ParameterDict( (default): Parameter containing: [torch.cuda.BFloat16Tensor of size 2304x16 (cuda:0)])\n",
|
||
" (lora_magnitude_vector): ModuleDict()\n",
|
||
" )\n",
|
||
" (layers): ModuleList(\n",
|
||
" (0-25): 26 x Gemma2DecoderLayer(\n",
|
||
" (self_attn): Gemma2Attention(\n",
|
||
" (q_proj): lora.Linear(\n",
|
||
" (base_layer): Linear(in_features=2304, out_features=2048, bias=False)\n",
|
||
" (lora_dropout): ModuleDict(\n",
|
||
" (default): Dropout(p=0.05, inplace=False)\n",
|
||
" )\n",
|
||
" (lora_A): ModuleDict(\n",
|
||
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
|
||
" )\n",
|
||
" (lora_B): ModuleDict(\n",
|
||
" (default): Linear(in_features=16, out_features=2048, bias=False)\n",
|
||
" )\n",
|
||
" (lora_embedding_A): ParameterDict()\n",
|
||
" (lora_embedding_B): ParameterDict()\n",
|
||
" (lora_magnitude_vector): ModuleDict()\n",
|
||
" )\n",
|
||
" (k_proj): lora.Linear(\n",
|
||
" (base_layer): Linear(in_features=2304, out_features=1024, bias=False)\n",
|
||
" (lora_dropout): ModuleDict(\n",
|
||
" (default): Dropout(p=0.05, inplace=False)\n",
|
||
" )\n",
|
||
" (lora_A): ModuleDict(\n",
|
||
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
|
||
" )\n",
|
||
" (lora_B): ModuleDict(\n",
|
||
" (default): Linear(in_features=16, out_features=1024, bias=False)\n",
|
||
" )\n",
|
||
" (lora_embedding_A): ParameterDict()\n",
|
||
" (lora_embedding_B): ParameterDict()\n",
|
||
" (lora_magnitude_vector): ModuleDict()\n",
|
||
" )\n",
|
||
" (v_proj): lora.Linear(\n",
|
||
" (base_layer): Linear(in_features=2304, out_features=1024, bias=False)\n",
|
||
" (lora_dropout): ModuleDict(\n",
|
||
" (default): Dropout(p=0.05, inplace=False)\n",
|
||
" )\n",
|
||
" (lora_A): ModuleDict(\n",
|
||
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
|
||
" )\n",
|
||
" (lora_B): ModuleDict(\n",
|
||
" (default): Linear(in_features=16, out_features=1024, bias=False)\n",
|
||
" )\n",
|
||
" (lora_embedding_A): ParameterDict()\n",
|
||
" (lora_embedding_B): ParameterDict()\n",
|
||
" (lora_magnitude_vector): ModuleDict()\n",
|
||
" )\n",
|
||
" (o_proj): lora.Linear(\n",
|
||
" (base_layer): Linear(in_features=2048, out_features=2304, bias=False)\n",
|
||
" (lora_dropout): ModuleDict(\n",
|
||
" (default): Dropout(p=0.05, inplace=False)\n",
|
||
" )\n",
|
||
" (lora_A): ModuleDict(\n",
|
||
" (default): Linear(in_features=2048, out_features=16, bias=False)\n",
|
||
" )\n",
|
||
" (lora_B): ModuleDict(\n",
|
||
" (default): Linear(in_features=16, out_features=2304, bias=False)\n",
|
||
" )\n",
|
||
" (lora_embedding_A): ParameterDict()\n",
|
||
" (lora_embedding_B): ParameterDict()\n",
|
||
" (lora_magnitude_vector): ModuleDict()\n",
|
||
" )\n",
|
||
" (rotary_emb): Gemma2RotaryEmbedding()\n",
|
||
" )\n",
|
||
" (mlp): Gemma2MLP(\n",
|
||
" (gate_proj): lora.Linear(\n",
|
||
" (base_layer): Linear(in_features=2304, out_features=9216, bias=False)\n",
|
||
" (lora_dropout): ModuleDict(\n",
|
||
" (default): Dropout(p=0.05, inplace=False)\n",
|
||
" )\n",
|
||
" (lora_A): ModuleDict(\n",
|
||
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
|
||
" )\n",
|
||
" (lora_B): ModuleDict(\n",
|
||
" (default): Linear(in_features=16, out_features=9216, bias=False)\n",
|
||
" )\n",
|
||
" (lora_embedding_A): ParameterDict()\n",
|
||
" (lora_embedding_B): ParameterDict()\n",
|
||
" (lora_magnitude_vector): ModuleDict()\n",
|
||
" )\n",
|
||
" (up_proj): lora.Linear(\n",
|
||
" (base_layer): Linear(in_features=2304, out_features=9216, bias=False)\n",
|
||
" (lora_dropout): ModuleDict(\n",
|
||
" (default): Dropout(p=0.05, inplace=False)\n",
|
||
" )\n",
|
||
" (lora_A): ModuleDict(\n",
|
||
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
|
||
" )\n",
|
||
" (lora_B): ModuleDict(\n",
|
||
" (default): Linear(in_features=16, out_features=9216, bias=False)\n",
|
||
" )\n",
|
||
" (lora_embedding_A): ParameterDict()\n",
|
||
" (lora_embedding_B): ParameterDict()\n",
|
||
" (lora_magnitude_vector): ModuleDict()\n",
|
||
" )\n",
|
||
" (down_proj): lora.Linear(\n",
|
||
" (base_layer): Linear(in_features=9216, out_features=2304, bias=False)\n",
|
||
" (lora_dropout): ModuleDict(\n",
|
||
" (default): Dropout(p=0.05, inplace=False)\n",
|
||
" )\n",
|
||
" (lora_A): ModuleDict(\n",
|
||
" (default): Linear(in_features=9216, out_features=16, bias=False)\n",
|
||
" )\n",
|
||
" (lora_B): ModuleDict(\n",
|
||
" (default): Linear(in_features=16, out_features=2304, bias=False)\n",
|
||
" )\n",
|
||
" (lora_embedding_A): ParameterDict()\n",
|
||
" (lora_embedding_B): ParameterDict()\n",
|
||
" (lora_magnitude_vector): ModuleDict()\n",
|
||
" )\n",
|
||
" (act_fn): PytorchGELUTanh()\n",
|
||
" )\n",
|
||
" (input_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
||
" (pre_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
||
" (post_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
||
" (post_attention_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
||
" )\n",
|
||
" )\n",
|
||
" (norm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
|
||
" )\n",
|
||
" (lm_head): lora.Linear(\n",
|
||
" (base_layer): Linear(in_features=2304, out_features=256006, bias=False)\n",
|
||
" (lora_dropout): ModuleDict(\n",
|
||
" (default): Dropout(p=0.05, inplace=False)\n",
|
||
" )\n",
|
||
" (lora_A): ModuleDict(\n",
|
||
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
|
||
" )\n",
|
||
" (lora_B): ModuleDict(\n",
|
||
" (default): Linear(in_features=16, out_features=256006, bias=False)\n",
|
||
" )\n",
|
||
" (lora_embedding_A): ParameterDict()\n",
|
||
" (lora_embedding_B): ParameterDict()\n",
|
||
" (lora_magnitude_vector): ModuleDict()\n",
|
||
" )\n",
|
||
" )\n",
|
||
" )\n",
|
||
")"
|
||
]
|
||
},
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"from peft import PeftModel, PeftConfig\n",
|
||
"from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig\n",
|
||
"from datasets import load_dataset\n",
|
||
"import torch\n",
|
||
"\n",
|
||
"bnb_config = BitsAndBytesConfig(\n",
|
||
" load_in_4bit=True,\n",
|
||
" bnb_4bit_quant_type=\"nf4\",\n",
|
||
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
||
" bnb_4bit_use_double_quant=True,\n",
|
||
" )\n",
|
||
"\n",
|
||
"peft_model_id = f\"{username}/{output_dir}\" # replace with your newly trained adapter\n",
|
||
"device = \"auto\"\n",
|
||
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
||
"model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,\n",
|
||
" device_map=device,\n",
|
||
" )\n",
|
||
"tokenizer = AutoTokenizer.from_pretrained(peft_model_id)\n",
|
||
"model.resize_token_embeddings(len(tokenizer))\n",
|
||
"model = PeftModel.from_pretrained(model, peft_model_id)\n",
|
||
"model.to(torch.bfloat16)\n",
|
||
"model.eval()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"id": "69e83af9-f967-4e5a-842b-0daed13f7957",
|
||
"metadata": {
|
||
"id": "69e83af9-f967-4e5a-842b-0daed13f7957",
|
||
"outputId": "979b2ee9-fe5b-49b1-aed5-e28f0239a709",
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<bos><start_of_turn>human\n",
|
||
"You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools:<tools> [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] </tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n",
|
||
"<tool_call>\n",
|
||
"{tool_call}\n",
|
||
"</tool_call>Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think>\n",
|
||
"\n",
|
||
"Hi, I need to convert 500 USD to Euros. Can you help me with that?<end_of_turn><eos>\n",
|
||
"<start_of_turn>model\n",
|
||
"<think>Alright, so I'm looking at this scenario where the user needs help converting 500 USD to Euros. Let's break it down step by step to understand how to approach this.\n",
|
||
"\n",
|
||
"First, the user has asked for conversion from USD to EUR. I know there's a specific tool available for currency conversion called `convert_currency`. This tool requires three parameters: amount, from_currency, and to_currency. In the user's message, they've provided all necessary details—500 USD and the desire to convert to Euros. \n",
|
||
"\n",
|
||
"I don't need to make any assumptions here because the user has already provided the exact amount and the target currency. My next step is to prepare the function call with the correct parameters. So, I'll structure the request with the amount as 500, from_currency as USD, and to_currency as EUR. \n",
|
||
"\n",
|
||
"This will be sent in JSON format as specified, ensuring that the tool receives all the necessary information to perform the conversion accurately. Once the function is called, it should return the converted amount, which I can then present back to the user.\n",
|
||
"</think><tool_call>\n",
|
||
"{'name': 'convert_currency', 'arguments': {'amount': 500, 'from_currency': 'USD', 'to_currency': 'EUR'}}\n",
|
||
"</tool_call><end_of_turn><eos>\n",
|
||
"<start_of_turn>tool\n",
|
||
"<tool_response>\n",
|
||
"{'converted_amount': 420.5, 'from_currency': 'USD', 'to_currency': 'EUR'}\n",
|
||
"</tool_response><end_of_turn><eos>\n",
|
||
"<start_of_turn>model\n",
|
||
"Sure, 500 USD is approximately 420.50 Euros.<end_of_turn><eos>\n",
|
||
"<start_of_turn>human\n",
|
||
"That's great! Now, can you convert 1000 Euros back to USD?<end_of_turn><eos>\n",
|
||
"<start_of_turn>model\n",
|
||
"<think>Okay, so I'm trying to figure out how to handle the next function call based on the conversation and the previous steps. Let me see...\n",
|
||
"\n",
|
||
"In the conversation, the user first asked to convert 500 USD to Euros, and the model used the `convert_currency` function with the parameters amount=500, from_currency=USD, to_currency=EUR. Then, after getting the response, the model provided the converted amount. Now, the user is asking to convert 1000 Euros back to USD. \n",
|
||
"\n",
|
||
"So, the user's request is clear: convert 1000 EUR to USD. Since the function `convert_currency` is designed to handle currency conversions, and it requires amount, from_currency, and to_currency as parameters, it makes sense to call this function again with the updated values. \n",
|
||
"\n",
|
||
"The amount is 1000, from_currency should be EUR because the user is converting from Euros, and to_currency should be USD because they want the result in US Dollars. I don't need to make any assumptions here because all the required information is provided by the user. \n",
|
||
"\n",
|
||
"I'll structure the function call with these parameters. This should give the user the accurate converted amount from Euros to USD. Once the tool processes this, the model can present the result back to the user.\n",
|
||
"</think><tool_call>\n",
|
||
"{'name': 'convert_currency', 'arguments': {'amount': 1000, 'from_currency': 'EUR', 'to_currency': 'USD'}}\n",
|
||
"</tool_call><end_of_turn><eos>\n",
|
||
"<start_of_turn>tool\n",
|
||
"<tool_response>\n",
|
||
"{'converted_amount': 1190.0, 'from_currency': 'EUR', 'to_currency': 'USD'}\n",
|
||
"</tool_response><end_of_turn><eos>\n",
|
||
"<start_of_turn>model\n",
|
||
"1000 Euros is approximately 1190.00 USD.<end_of_turn><eos>\n",
|
||
"<start_of_turn>human\n",
|
||
"Thank you for your help!<end_of_turn><eos>\n",
|
||
"<start_of_turn>model\n",
|
||
"You're welcome! If you have any other questions, feel free to ask.<end_of_turn><eos>\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(dataset[\"test\"][8][\"text\"])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b47fd511-ea00-47ce-8618-6e78e25672b2",
|
||
"metadata": {
|
||
"id": "b47fd511-ea00-47ce-8618-6e78e25672b2"
|
||
},
|
||
"source": [
|
||
"### Testing the model 🚀\n",
|
||
"\n",
|
||
"In that case, we will take the start of one of the samples from the test set and hope that it will generate the expected output.\n",
|
||
"\n",
|
||
"Since we want to test the function-calling capacities of our newly fine-tuned model, the input will be a user message with the available tools, a\n",
|
||
"\n",
|
||
"\n",
|
||
"### Disclaimer ⚠️\n",
|
||
"\n",
|
||
"The dataset we’re using **does not contain sufficient training data** and is purely for **educational purposes**. As a result, **your trained model’s outputs may differ** from the examples shown in this course. **Don’t be discouraged** if your results vary—our primary goal here is to illustrate the core concepts rather than produce a fully optimized or production-ready model.\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"id": "37bf938d-08fa-4577-9966-0238339afcdb",
|
||
"metadata": {
|
||
"id": "37bf938d-08fa-4577-9966-0238339afcdb",
|
||
"outputId": "e97e7a1e-5ab2-46a2-dc3a-f436964fe004",
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<bos><start_of_turn>human\n",
|
||
"You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools:<tools> [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] </tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n",
|
||
"<tool_call>\n",
|
||
"{tool_call}\n",
|
||
"</tool_call>Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think>\n",
|
||
"\n",
|
||
"Hi, I need to convert 500 USD to Euros. Can you help me with that?<end_of_turn><eos>\n",
|
||
"<start_of_turn>model\n",
|
||
"<think>Okay, so the user is asking to convert 500 USD to Euros. I need to figure out how to respond using the available functions. Let me look at the tools provided. There's a function called convert_currency which does exactly that—it converts one currency to another. The parameters required are amount, from_currency, and to_currency. \n",
|
||
"\n",
|
||
"The user provided the amount as 500, the source currency as USD, and the target currency as EUR. That fits perfectly with the function's parameters. I don't need to make any assumptions here because the user has given all the necessary details. \n",
|
||
"\n",
|
||
"So, I should call the convert_currency function with these arguments. That should give the user the converted amount they need.\n",
|
||
"</think><tool_call>\n",
|
||
"{'name': 'convert_currency', 'arguments': {'amount': 500, 'from_currency': 'USD', 'to_currency': 'EUR'}}\n",
|
||
"</tool_call><end_of_turn><eos>\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"#this prompt is a sub-sample of one of the test set examples. In this example we start the generation after the model generation starts.\n",
|
||
"prompt=\"\"\"<bos><start_of_turn>human\n",
|
||
"You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools:<tools> [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] </tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n",
|
||
"<tool_call>\n",
|
||
"{tool_call}\n",
|
||
"</tool_call>Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think>\n",
|
||
"\n",
|
||
"Hi, I need to convert 500 USD to Euros. Can you help me with that?<end_of_turn><eos>\n",
|
||
"<start_of_turn>model\n",
|
||
"<think>\"\"\"\n",
|
||
"\n",
|
||
"inputs = tokenizer(prompt, return_tensors=\"pt\", add_special_tokens=False)\n",
|
||
"inputs = {k: v.to(\"cuda\") for k,v in inputs.items()}\n",
|
||
"outputs = model.generate(**inputs,\n",
|
||
" max_new_tokens=300,# Adapt as necessary\n",
|
||
" do_sample=True,\n",
|
||
" top_p=0.95,\n",
|
||
" temperature=0.01,\n",
|
||
" repetition_penalty=1.0,\n",
|
||
" eos_token_id=tokenizer.eos_token_id)\n",
|
||
"print(tokenizer.decode(outputs[0]))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "xWewPCZOyfJQ",
|
||
"metadata": {
|
||
"id": "xWewPCZOyfJQ"
|
||
},
|
||
"source": [
|
||
"## Congratulations\n",
|
||
"Congratulations on finishing this first Bonus Unit 🥳\n",
|
||
"\n",
|
||
"You've just **mastered what Function-Calling is and how to fine-tune your model to do Function-Calling**!\n",
|
||
"\n",
|
||
"If it's the first time you do this, it's normal that you're feeling puzzled. Take time to check the documentation and understand each part of the code and why we did it this way.\n",
|
||
"\n",
|
||
"Also, don't hesitate to try to **fine-tune different models**. The **best way to learn is by trying.**\n",
|
||
"\n",
|
||
"### Keep Learning, Stay Awesome 🤗"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"accelerator": "GPU",
|
||
"colab": {
|
||
"gpuType": "T4",
|
||
"provenance": []
|
||
},
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.9.5"
|
||
},
|
||
"widgets": {
|
||
"application/vnd.jupyter.widget-state+json": {
|
||
"001b32600fdd418bb30c6b5ff85e269c": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"03b839beea6a4f6b8d9005491146615d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"03b8a027c56f4b52a3e54f57bb5bb526": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"0a0bc95f445948f486fbce865a4642f2": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"0c881b9322624d70bb2c5147a5422633": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"0db5d5c516d7479ebf7603093f9e1e99": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"0fe7751f55134695afb44bf8673dd4d9": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"0ff4d8414af94af59628b0417a40cc7d": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1296a8a4baea4faabc62a42b2ca1a53a": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"13b49790234c4d1aa8fe9b532fcf95bf": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"197619158cd247649eac3722284c8d19": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1981ff353e494735be4706a76053c24a": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1af481e6544a4fa386815218461cd5c3": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"1c810f5364544762a3093e1a0a9c1e5b": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1d104fe8612f45e4810bbed7e3540330": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1e271fcb92a14680b84c33cb7c28f9c0": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1e9d8fccba9a468291ffe271b3497830": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1ead218e71614374909b92fda097fd42": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"21cf377576154ffeb028f4ae3b3503d5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_2b8c9e43da4e4e008a2a2b06e6f3106e",
|
||
"max": 24223,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_62f3a32c4f484dd6899ba5d6ffbaca11",
|
||
"value": 24223
|
||
}
|
||
},
|
||
"26484831a87a4b489e1288ea71ea7767": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"26bd63db6a384c12b7d42bf95ca1d1bc": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"2828b2455ec44143a5739c8e8207fb9b": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"298f092855f14af79ec2eda792732810": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_a385bba49b514ab386cb5f4cbb01821f",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_78a34eb9cd534c3d84c8f22d3c53c88f",
|
||
"value": "Tokenizing eval dataset: 100%"
|
||
}
|
||
},
|
||
"2b8c9e43da4e4e008a2a2b06e6f3106e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"2bcef869f1814a04bbbed73df7a9ab24": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"2ccddb85840c4981ae089ae4c74a2de6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_89eee480405a416ba0edf097423724b9",
|
||
"IPY_MODEL_56e8079c374a4f3f9af5ef96a73f2955",
|
||
"IPY_MODEL_3aeb28bc164444d7afb7bf7435a001f2"
|
||
],
|
||
"layout": "IPY_MODEL_1ead218e71614374909b92fda097fd42"
|
||
}
|
||
},
|
||
"2e6392b95f8a48568a89780adf76387f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_cee71fbbf8a04b3bb64b96e7fa2b0b0e",
|
||
"max": 10,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_0a0bc95f445948f486fbce865a4642f2",
|
||
"value": 10
|
||
}
|
||
},
|
||
"2eb5230a43e84790b0392db58157b0f1": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"2f73c87217c84bd293a5ea5b4aba0ae5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_6883c5e46d3948649488d3e9f81ddb9c",
|
||
"IPY_MODEL_d0498872e00f4644847e073c6000a111",
|
||
"IPY_MODEL_482f477cc2354d9da6a8c2932bb73e98"
|
||
],
|
||
"layout": "IPY_MODEL_1c810f5364544762a3093e1a0a9c1e5b"
|
||
}
|
||
},
|
||
"328fa6d902bd46bbb0ecdc7404a13e8c": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"33ec043a635f4e99b67cd6f7e6fc6193": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"36bbd4bd563a4053a7af8532300253b7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_33ec043a635f4e99b67cd6f7e6fc6193",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_39fee7a249c146d1a166e58755c1cda8",
|
||
"value": " 100/100 [00:00<00:00, 277.78 examples/s]"
|
||
}
|
||
},
|
||
"39c0963803c74ebab07cec20e10d0184": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_46b69fb951af44f99232f459daa4f103",
|
||
"IPY_MODEL_3e23b4c5848843fcb44dc0ae2f157d66",
|
||
"IPY_MODEL_c9f86634a6bf4e49a902e3d42e67f1bd"
|
||
],
|
||
"layout": "IPY_MODEL_03b8a027c56f4b52a3e54f57bb5bb526"
|
||
}
|
||
},
|
||
"39fee7a249c146d1a166e58755c1cda8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"39fff32b9756437581228465165a3115": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"3aeb28bc164444d7afb7bf7435a001f2": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_9f8d631358e240f982e31171d1bd9f26",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_a0c7029819414c5dacefed93194cd763",
|
||
"value": " 100/100 [00:00<00:00, 648.06 examples/s]"
|
||
}
|
||
},
|
||
"3b07ec7f4d024b61abe94c8adeebed55": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"3bb2805fcf0441089c0f4789e28b072d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_eedc1213dd604bbe827dcec617fdae34",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_f73f91bb567a48f890ba0827b7ed321f",
|
||
"value": "Downloading shards: 100%"
|
||
}
|
||
},
|
||
"3e23b4c5848843fcb44dc0ae2f157d66": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_b5121cada3514b67a9c533e7468b3058",
|
||
"max": 10,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_bf70daf78057419b8a78af75a093a3dd",
|
||
"value": 10
|
||
}
|
||
},
|
||
"425fe267a38748ea9670a0996b802bdc": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"4349fab6f16343cb8955367f6fbc4a43": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_0ff4d8414af94af59628b0417a40cc7d",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_534a5dc9cd7e475db2be613849959fc7",
|
||
"value": "model-00001-of-00002.safetensors: 100%"
|
||
}
|
||
},
|
||
"45e867ccde7d4b5bb4ed4861d723a758": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_2bcef869f1814a04bbbed73df7a9ab24",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_e3bd52cd621e4d2196e94327324722c4",
|
||
"value": "generation_config.json: 100%"
|
||
}
|
||
},
|
||
"46b69fb951af44f99232f459daa4f103": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_58a18918bae34aca8ec73ae89fd5bc24",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_fd6e1776cbcd4f7b96ec6d9754eb2c83",
|
||
"value": "Packing eval dataset: 100%"
|
||
}
|
||
},
|
||
"472cbf91b24f46829960d68e2316c417": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_f2157c83879046a29b72613bce9de56e",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_3b07ec7f4d024b61abe94c8adeebed55",
|
||
"value": "Applying chat template to train dataset: 100%"
|
||
}
|
||
},
|
||
"482f477cc2354d9da6a8c2932bb73e98": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_51b42c72bc2b428fbc0389bfd4d9e598",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_611a6d951d2a42b9b650496612cfd484",
|
||
"value": " 2/2 [00:25<00:00, 10.98s/it]"
|
||
}
|
||
},
|
||
"4cfce958cf5445129ab6281784664038": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"4d006dc72b2b45b58caf4d398c3756b8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_328fa6d902bd46bbb0ecdc7404a13e8c",
|
||
"max": 100,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_f375fed157034dfcbd28744027d77eba",
|
||
"value": 100
|
||
}
|
||
},
|
||
"4e21f1bd903443a89dea32bb3f3c26a9": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"4f75329d3e8d4cc38a405c1c4cc51d70": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"51b42c72bc2b428fbc0389bfd4d9e598": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"534a5dc9cd7e475db2be613849959fc7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"537e188c000041fea6adf26f2255d738": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"538f6a3c632f431fa9d16ab17383a602": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"54fc2d9962de4ffda0500a01e112b58a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_8e70cccb0fb04a43b3c6ab234bcae9a8",
|
||
"IPY_MODEL_f2d87447fe8448c7baff656c540620e6",
|
||
"IPY_MODEL_5f438fbbfb60436faf79662e81092154"
|
||
],
|
||
"layout": "IPY_MODEL_197619158cd247649eac3722284c8d19"
|
||
}
|
||
},
|
||
"55e72b7f262b4f57a6abb1c9f01c8de2": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_b782092e2282488ba86f85eebe697603",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_f7ba9e0f4e64484a82374bb5f1d12b15",
|
||
"value": " 10/10 [00:00<00:00, 154.34 examples/s]"
|
||
}
|
||
},
|
||
"56e8079c374a4f3f9af5ef96a73f2955": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_e633387b1640461e82617c1702ee82f5",
|
||
"max": 100,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_26484831a87a4b489e1288ea71ea7767",
|
||
"value": 100
|
||
}
|
||
},
|
||
"57d137229091486dbf0e4b7dd6dce98a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_b4c43d908bd64d9bbdb488dac46d2e45",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_96691a6287ef401582a2a1744a4940c4",
|
||
"value": "Tokenizing train dataset: 100%"
|
||
}
|
||
},
|
||
"58a18918bae34aca8ec73ae89fd5bc24": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"5c8fa13e559942849a61d9480be730bd": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_1e271fcb92a14680b84c33cb7c28f9c0",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_da543c28b9e44723b019220de8427b5e",
|
||
"value": " 24.2k/24.2k [00:00<00:00, 1.86MB/s]"
|
||
}
|
||
},
|
||
"5ec98ede3fbf4c64843b935ce3ad28a7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_ec8ecb8bdee4435fbc97d73863ebd9f8",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_1af481e6544a4fa386815218461cd5c3",
|
||
"value": " 241M/241M [00:05<00:00, 41.5MB/s]"
|
||
}
|
||
},
|
||
"5f438fbbfb60436faf79662e81092154": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_0db5d5c516d7479ebf7603093f9e1e99",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_654fd18a9e59415e9dd314dc2f94a654",
|
||
"value": " 838/838 [00:00<00:00, 38.3kB/s]"
|
||
}
|
||
},
|
||
"611a6d951d2a42b9b650496612cfd484": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"6296f0c3ac5647e9b9cbc7c8212a2b35": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_b821e13722e24feb941fa31a604a85e9",
|
||
"max": 4988025760,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_91c21b2b127640e195f2e7c7256b5a0e",
|
||
"value": 4988025760
|
||
}
|
||
},
|
||
"62f3a32c4f484dd6899ba5d6ffbaca11": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"63c269b37eed4d348f9ce24eef15fc15": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_73c9d510c8754f2ea21adf318e35bc8e",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_0fe7751f55134695afb44bf8673dd4d9",
|
||
"value": "Applying chat template to eval dataset: 100%"
|
||
}
|
||
},
|
||
"654fd18a9e59415e9dd314dc2f94a654": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"681019ca1d084d9692f5085d1df520ae": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"6883c5e46d3948649488d3e9f81ddb9c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_681019ca1d084d9692f5085d1df520ae",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_b1bb9bcec30144a380fa4fe440c41d7c",
|
||
"value": "Loading checkpoint shards: 100%"
|
||
}
|
||
},
|
||
"68baf2700f614be288bf35e54d207096": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_fc9a32511862493e980682b6ff5044bb",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_538f6a3c632f431fa9d16ab17383a602",
|
||
"value": " 187/187 [00:00<00:00, 12.9kB/s]"
|
||
}
|
||
},
|
||
"6e1393f9f39a4b3cb94753c883b1bbf7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_fe30dac330db4fde94af1c54c84a1be8",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_4cfce958cf5445129ab6281784664038",
|
||
"value": " 2/2 [02:06<00:00, 53.19s/it]"
|
||
}
|
||
},
|
||
"6f4e106bb5b44f398a1fe4ac588f6cca": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"71ba28670e8d4583b66b1c1587cdbce1": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_4349fab6f16343cb8955367f6fbc4a43",
|
||
"IPY_MODEL_6296f0c3ac5647e9b9cbc7c8212a2b35",
|
||
"IPY_MODEL_c6d97ccbecb0407f89ef4469f3874e74"
|
||
],
|
||
"layout": "IPY_MODEL_ccabb079b6fd466fb877a018aebf793c"
|
||
}
|
||
},
|
||
"73c9d510c8754f2ea21adf318e35bc8e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"78a34eb9cd534c3d84c8f22d3c53c88f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"822bea0ac84d4ff29d984bf5f5d2c3a2": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"89033e9c0dd249db9dc9a3b1e215dded": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"89eee480405a416ba0edf097423724b9": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_822bea0ac84d4ff29d984bf5f5d2c3a2",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_ecef440c871b4daba34661a1ddba6b0c",
|
||
"value": "Packing train dataset: 100%"
|
||
}
|
||
},
|
||
"8bbe22288edf4a06b2c56952fd81d5e7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_298f092855f14af79ec2eda792732810",
|
||
"IPY_MODEL_2e6392b95f8a48568a89780adf76387f",
|
||
"IPY_MODEL_55e72b7f262b4f57a6abb1c9f01c8de2"
|
||
],
|
||
"layout": "IPY_MODEL_9fbca7fa0d6b4fff910b806a97fa7718"
|
||
}
|
||
},
|
||
"8e70cccb0fb04a43b3c6ab234bcae9a8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_1d104fe8612f45e4810bbed7e3540330",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_d62425b0d0ea497ead2cd981eaa61c7e",
|
||
"value": "config.json: 100%"
|
||
}
|
||
},
|
||
"91163fcffc60438cb39b0eb586dac418": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_39fff32b9756437581228465165a3115",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_4f75329d3e8d4cc38a405c1c4cc51d70",
|
||
"value": " 10/10 [00:00<00:00, 298.91 examples/s]"
|
||
}
|
||
},
|
||
"91c21b2b127640e195f2e7c7256b5a0e": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"952893c941c346c2aedcd9358859a3b9": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"95eebbfed6fc41d6a8c668abe1608756": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"96691a6287ef401582a2a1744a4940c4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"9a8b33ef0f6c446496cc7dae07da321c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"9ac674eeba0542e7b4e28a13e90ce652": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_2eb5230a43e84790b0392db58157b0f1",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_26bd63db6a384c12b7d42bf95ca1d1bc",
|
||
"value": "model-00002-of-00002.safetensors: 100%"
|
||
}
|
||
},
|
||
"9f8d631358e240f982e31171d1bd9f26": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"9fbca7fa0d6b4fff910b806a97fa7718": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"a0c7029819414c5dacefed93194cd763": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"a385bba49b514ab386cb5f4cbb01821f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"a76145e51f7544fdabd23198baf318c4": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"a89230859593424e960047a96977c6b8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_f7dd34e15348462297564f0e6e0b568d",
|
||
"max": 10,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_537e188c000041fea6adf26f2255d738",
|
||
"value": 10
|
||
}
|
||
},
|
||
"a893802af41d4400b35b9cb71add1387": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_45e867ccde7d4b5bb4ed4861d723a758",
|
||
"IPY_MODEL_f5e196c908e7491982773d3231fff3e6",
|
||
"IPY_MODEL_68baf2700f614be288bf35e54d207096"
|
||
],
|
||
"layout": "IPY_MODEL_001b32600fdd418bb30c6b5ff85e269c"
|
||
}
|
||
},
|
||
"a8edc3a5b0d9422b8e2e63d5564cfdc9": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b1542891fc6243d98d51981dd0584bdf": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_d36e7dd4b9dc497faa6e8f63843a738f",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_f469ec8c79ac476c82a5e228f347bffa",
|
||
"value": " 100/100 [00:00<00:00, 690.13 examples/s]"
|
||
}
|
||
},
|
||
"b1bb9bcec30144a380fa4fe440c41d7c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"b2e16ad7540d4760b28f3a8c419905f8": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b4c43d908bd64d9bbdb488dac46d2e45": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b5121cada3514b67a9c533e7468b3058": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b782092e2282488ba86f85eebe697603": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b821e13722e24feb941fa31a604a85e9": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"bc6e638133f545ff8d54f767de0cb35a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_a8edc3a5b0d9422b8e2e63d5564cfdc9",
|
||
"max": 2,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_e08c970bbf4540a89533a43f719f68e4",
|
||
"value": 2
|
||
}
|
||
},
|
||
"bd746ea2e46a491e954ac6f32fb0e45b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_e6f810bd430245b190ee932554cca05c",
|
||
"max": 100,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_952893c941c346c2aedcd9358859a3b9",
|
||
"value": 100
|
||
}
|
||
},
|
||
"bdbd9e7e1d674edeab47e3595f6af4f8": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"bf70daf78057419b8a78af75a093a3dd": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"c6d97ccbecb0407f89ef4469f3874e74": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_1296a8a4baea4faabc62a42b2ca1a53a",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_13b49790234c4d1aa8fe9b532fcf95bf",
|
||
"value": " 4.99G/4.99G [01:59<00:00, 42.4MB/s]"
|
||
}
|
||
},
|
||
"c9f86634a6bf4e49a902e3d42e67f1bd": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_e0b3b3c072be44de8e0a2dae91598aa6",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_4e21f1bd903443a89dea32bb3f3c26a9",
|
||
"value": " 10/10 [00:00<00:00, 312.22 examples/s]"
|
||
}
|
||
},
|
||
"cacc3c3a10c64b338866a8e42201e44c": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"cc4993f1af6b4f2685ecbced238b8913": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_6f4e106bb5b44f398a1fe4ac588f6cca",
|
||
"max": 240691728,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_0c881b9322624d70bb2c5147a5422633",
|
||
"value": 240691728
|
||
}
|
||
},
|
||
"ccabb079b6fd466fb877a018aebf793c": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"ce3c69ec86224ffea8c46deb20831bb7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_3bb2805fcf0441089c0f4789e28b072d",
|
||
"IPY_MODEL_bc6e638133f545ff8d54f767de0cb35a",
|
||
"IPY_MODEL_6e1393f9f39a4b3cb94753c883b1bbf7"
|
||
],
|
||
"layout": "IPY_MODEL_a76145e51f7544fdabd23198baf318c4"
|
||
}
|
||
},
|
||
"cee71fbbf8a04b3bb64b96e7fa2b0b0e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"d0498872e00f4644847e073c6000a111": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_425fe267a38748ea9670a0996b802bdc",
|
||
"max": 2,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_95eebbfed6fc41d6a8c668abe1608756",
|
||
"value": 2
|
||
}
|
||
},
|
||
"d1d376228c334c5999143b905e234ffc": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"d36e7dd4b9dc497faa6e8f63843a738f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"d62425b0d0ea497ead2cd981eaa61c7e": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"da543c28b9e44723b019220de8427b5e": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"deba87fc28db4f78b58fc1e456fea335": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_f06414fa35b64ff588511796c9b51d1f",
|
||
"IPY_MODEL_21cf377576154ffeb028f4ae3b3503d5",
|
||
"IPY_MODEL_5c8fa13e559942849a61d9480be730bd"
|
||
],
|
||
"layout": "IPY_MODEL_fae24e4a14814c7ebef30b422c2d3652"
|
||
}
|
||
},
|
||
"e08c970bbf4540a89533a43f719f68e4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"e0b3b3c072be44de8e0a2dae91598aa6": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e1ef7211c5554b2f8fdd39f2f846d2d9": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_9ac674eeba0542e7b4e28a13e90ce652",
|
||
"IPY_MODEL_cc4993f1af6b4f2685ecbced238b8913",
|
||
"IPY_MODEL_5ec98ede3fbf4c64843b935ce3ad28a7"
|
||
],
|
||
"layout": "IPY_MODEL_bdbd9e7e1d674edeab47e3595f6af4f8"
|
||
}
|
||
},
|
||
"e3bd52cd621e4d2196e94327324722c4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"e3fe61834c3e49a3895212a336776f9d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_472cbf91b24f46829960d68e2316c417",
|
||
"IPY_MODEL_bd746ea2e46a491e954ac6f32fb0e45b",
|
||
"IPY_MODEL_b1542891fc6243d98d51981dd0584bdf"
|
||
],
|
||
"layout": "IPY_MODEL_b2e16ad7540d4760b28f3a8c419905f8"
|
||
}
|
||
},
|
||
"e633387b1640461e82617c1702ee82f5": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e6f810bd430245b190ee932554cca05c": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e9de72aadc5743a2b56537b3ad035461": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_57d137229091486dbf0e4b7dd6dce98a",
|
||
"IPY_MODEL_4d006dc72b2b45b58caf4d398c3756b8",
|
||
"IPY_MODEL_36bbd4bd563a4053a7af8532300253b7"
|
||
],
|
||
"layout": "IPY_MODEL_cacc3c3a10c64b338866a8e42201e44c"
|
||
}
|
||
},
|
||
"ec8ecb8bdee4435fbc97d73863ebd9f8": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"ecef440c871b4daba34661a1ddba6b0c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"eedc1213dd604bbe827dcec617fdae34": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"f06414fa35b64ff588511796c9b51d1f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_1981ff353e494735be4706a76053c24a",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_9a8b33ef0f6c446496cc7dae07da321c",
|
||
"value": "model.safetensors.index.json: 100%"
|
||
}
|
||
},
|
||
"f2157c83879046a29b72613bce9de56e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"f2d87447fe8448c7baff656c540620e6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_2828b2455ec44143a5739c8e8207fb9b",
|
||
"max": 838,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_03b839beea6a4f6b8d9005491146615d",
|
||
"value": 838
|
||
}
|
||
},
|
||
"f375fed157034dfcbd28744027d77eba": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"f469ec8c79ac476c82a5e228f347bffa": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"f4a01e54ec53475585eaa88b3a272b4b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_63c269b37eed4d348f9ce24eef15fc15",
|
||
"IPY_MODEL_a89230859593424e960047a96977c6b8",
|
||
"IPY_MODEL_91163fcffc60438cb39b0eb586dac418"
|
||
],
|
||
"layout": "IPY_MODEL_89033e9c0dd249db9dc9a3b1e215dded"
|
||
}
|
||
},
|
||
"f5e196c908e7491982773d3231fff3e6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_1e9d8fccba9a468291ffe271b3497830",
|
||
"max": 187,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_d1d376228c334c5999143b905e234ffc",
|
||
"value": 187
|
||
}
|
||
},
|
||
"f73f91bb567a48f890ba0827b7ed321f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"f7ba9e0f4e64484a82374bb5f1d12b15": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"f7dd34e15348462297564f0e6e0b568d": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"fae24e4a14814c7ebef30b422c2d3652": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"fc9a32511862493e980682b6ff5044bb": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"fd6e1776cbcd4f7b96ec6d9754eb2c83": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"fe30dac330db4fde94af1c54c84a1be8": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
}
|
||
}
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|