""" Collection of common building blocks, helper auxiliary functions and composable strategy classes for reuse. Intended for simple missing-link procedures, not reinventing of better-suited, state-of-the-art, fast libraries, such as TA-Lib, Tulipy, PyAlgoTrade, NumPy, SciPy ... Please raise ideas for additions to this collection on the [issue tracker]. [issue tracker]: https://github.com/kernc/backtesting.py """ from collections import OrderedDict from itertools import compress from numbers import Number from inspect import currentframe from typing import Sequence, Optional, Union, Callable import numpy as np import pandas as pd from .backtesting import Strategy from ._plotting import plot_heatmaps as _plot_heatmaps from ._util import _Array, _Indicator, _as_str OHLCV_AGG = OrderedDict(( ('Open', 'first'), ('High', 'max'), ('Low', 'min'), ('Close', 'last'), ('Volume', 'sum'), )) """Dictionary of rules for aggregating resampled OHLCV data frames, e.g. df.resample('4H', label='right').agg(OHLCV_AGG) """ def barssince(condition: Sequence[bool], default=np.inf) -> int: """ Return the number of bars since `condition` sequence was last `True`, or if never, return `default`. >>> barssince(self.data.Close > self.data.Open) 3 """ return next(compress(range(len(condition)), reversed(condition)), default) def cross(series1, series2) -> bool: """ Return `True` if `series1` and `series2` just crossed (either direction). >>> cross(self.data.Close, self.sma) True """ return crossover(series1, series2) or crossover(series2, series1) def crossover(series1, series2) -> bool: """ Return `True` if `series1` just crossed over `series2`. >>> crossover(self.data.Close, self.sma) True """ series1 = ( series1.values if isinstance(series1, pd.Series) else (series1, series1) if isinstance(series1, Number) else series1) series2 = ( series2.values if isinstance(series2, pd.Series) else (series2, series2) if isinstance(series2, Number) else series2) try: return series1[-2] < series2[-2] and series1[-1] > series2[-1] except IndexError: return False def plot_heatmaps(heatmap: pd.Series, agg: Union[str, Callable] = 'max', *, ncols: int = 3, plot_width: int = 1200, filename: str = '', open_browser: bool = True): """ Plots a grid of heatmaps, one for every pair of parameters in `heatmap`. `heatmap` is a Series as returned by `backtesting.backtesting.Backtest.optimize` when its parameter `return_heatmap=True`. When projecting the n-dimensional heatmap onto 2D, the values are aggregated by 'max' function by default. This can be tweaked with `agg` parameter, which accepts any argument pandas knows how to aggregate by. """ return _plot_heatmaps(heatmap, agg, ncols, filename, plot_width, open_browser) def quantile(series, quantile=None): """ If `quantile` is `None`, return the quantile _rank_ of the last value of `series` wrt former series values. If `quantile` is a value between 0 and 1, return the _value_ of `series` at this quantile. If used to working with percentiles, just divide your percentile amount with 100 to obtain quantiles. >>> quantile(self.data.Close[-20:], .1) 162.130 >>> quantile(self.data.Close) 0.13 """ if quantile is None: try: last, series = series[-1], series[:-1] return np.mean(series < last) except IndexError: return np.nan assert 0 <= quantile <= 1, "quantile must be within [0, 1]" return np.nanpercentile(series, quantile * 100) def resample_apply(rule: str, func: Callable, series, *args, **kwargs): """ Apply `func` (such as an indicator) to `series`, resampled to a time frame specified by `rule`. When called from inside `backtesting.backtesting.Strategy.init`, the result (returned) series will be automatically wrapped in `backtesting.backtesting.Strategy.I` wrapper method. `rule` is a valid [Pandas offset string] indicating a time frame to resample `series` to. [Pandas offset string]: \ http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases `func` is the indicator function to apply on the resampled series. `series` is a data series (or array), such as any of the `backtesting.backtesting.Strategy.data` series. Due to pandas resampling limitations, this only works when input series has a datetime index. Finally, any `*args` and `**kwargs` that are not already eaten by implicit `backtesting.backtesting.Strategy.I` call are passed to `func`. For example, if we have a typical moving average function `SMA(values, lookback_period)`, _hourly_ data source, and need to apply the moving average MA(10) on a _daily_ time frame, but don't want to plot the resulting indicator, we can do: class System(Strategy): def init(self): self.sma = resample_apply( 'D', SMA, self.data.Close, 10, plot=False) This short snippet is roughly equivalent to: class System(Strategy): def init(self): # Strategy exposes `self.data` as raw NumPy arrays. # Let's convert closing prices back to pandas Series. close = self.data.Close.to_series() # Resample to daily resolution. Aggregate groups # using their last value (i.e. closing price at the end # of the day). Notice `label='right'`. If it were set to # 'left' (default), the strategy would exhibit # look-ahead bias. daily = close.resample('D', label='right').agg('last') # We apply SMA(10) to daily close prices, # then reindex it back to original hourly index, # forward-filling the missing values in each day. # We make a separate function that returns the final # indicator array. def SMA(series, n): from backtesting.test import SMA return SMA(series, n).reindex(close.index).ffill() # The result equivalent to the short example above: self.sma = self.I(SMA, daily, 10, plot=False) """ if not isinstance(series, pd.Series): assert isinstance(series, _Array), \ 'resample_apply() takes either a `pd.Series` or a `Strategy.data.*` array' series = series.to_series() resampled = series.resample(rule, label='right').agg('last').dropna() resampled.name = _as_str(series) + '[' + rule + ']' # Check first few stack frames if we are being called from # inside Strategy.init, and if so, extract Strategy.I wrapper. frame, level = currentframe(), 0 while frame and level <= 3: frame = frame.f_back level += 1 if isinstance(frame.f_locals.get('self'), Strategy): strategy_I = frame.f_locals['self'].I break else: def strategy_I(func, *args, **kwargs): return func(*args, **kwargs) # Resample back to data index def wrap_func(resampled, *args, **kwargs): ind = func(resampled, *args, **kwargs) ind = ind.reindex(index=series.index | ind.index, method='ffill').reindex(series.index) return ind wrap_func.__name__ = func.__name__ array = strategy_I(wrap_func, resampled, *args, **kwargs) return array class SignalStrategy(Strategy): """ A simple helper strategy that operates on position entry/exit signals. This makes the backtest of the strategy simulate a [vectorized backtest]. See [tutorials] for usage examples. [vectorized backtest]: https://www.google.com/search?q=vectorized+backtest [tutorials]: index.html#tutorials To use this helper strategy, subclass it, override its `backtesting.backtesting.Strategy.init` method, and set the signal vector by calling `backtesting.lib.SignalStrategy.set_signal` method from within it. class ExampleStrategy(SignalStrategy): def init(self): super().init() self.set_signal(sma1 > sma2, sma1 < sma2) Remember to call `super().init()` and `super().next()` in your overridden methods. """ __entry_signal = (0,) __exit_signal = (False,) def set_signal(self, entry: Sequence[int], exit: Optional[Sequence[bool]] = None, plot: bool = True): """ Set entry/exit signal vectors (arrays). An long entry signal is considered present wherever `entry` is greater than zero. A short entry signal is considered present wherever `entry` is less than zero. If `exit` is provided, a nonzero value closes the position, if any; otherwise the position is held until a reverse signal in `entry`. If `plot` is `True`, the signal entry/exit indicators are plotted when `backtesting.backtesting.Backtest.plot` is called. """ self.__entry_signal = _Indicator(pd.Series(entry, dtype=float).fillna(0), name='entry', plot=plot, overlay=False) if exit is not None: self.__exit_signal = _Indicator(pd.Series(exit, dtype=float).fillna(0), name='exit', plot=plot, overlay=False) def next(self): super().next() if self.position and self.__exit_signal[-1]: self.position.close() signal = self.__entry_signal[-1] if signal > 0: self.buy() elif signal < 0: self.sell() class TrailingStrategy(Strategy): """ A strategy with automatic trailing stop-loss, trailing the current price at distance of some multiple of average true range (ATR). Call `TrailingStrategy.set_trailing_sl()` to set said multiple (`6` by default). See [tutorials] for usage examples. [tutorials]: index.html#tutorials Remember to call `super().init()` and `super().next()` in your overridden methods. """ __n_atr = 6 __atr = None def init(self): super().init() self.set_atr_periods() def set_atr_periods(self, periods: int = 100): """ Set the lookback period for computing ATR. The default value of 100 ensures a _stable_ ATR. """ h, l, c_prev = self.data.High, self.data.Low, pd.Series(self.data.Close).shift(1) tr = np.max([h - l, (c_prev - h).abs(), (c_prev - l).abs()], axis=0) atr = pd.Series(tr).rolling(periods).mean().bfill().values self.__atr = atr def set_trailing_sl(self, n_atr: float = 6): """ Sets the future trailing stop-loss as some multiple (`n_atr`) average true bar ranges away from the current price. """ self.__n_atr = n_atr def next(self): super().next() if self.__n_atr and self.position: if self.position.is_long: self.orders.set_sl(self.data.Close[-1] - self.__atr[-1] * self.__n_atr) else: self.orders.set_sl(self.data.Close[-1] + self.__atr[-1] * self.__n_atr) # NOTE: Don't put anything below this __all__ list __all__ = [getattr(v, '__name__', k) for k, v in globals().items() # export if ((callable(v) and v.__module__ == __name__ or # callables from this module k.isupper()) and # or CONSTANTS not getattr(v, '__name__', k).startswith('_'))] # neither marked internal # NOTE: Don't put anything below here. See above.