Files
browser-use-web-ui/webui.py
BioInfo 150a8b4384 feat: add OpenAI O3-mini model support and fix theme handling
- Add O3-mini model to OpenAI model options
- Remove forced dark theme to allow system/light theme options
- Fix JSON template escape sequence in custom prompts
2025-02-01 20:37:04 -05:00

968 lines
37 KiB
Python

import pdb
import logging
from dotenv import load_dotenv
load_dotenv()
import os
import glob
import asyncio
import argparse
import os
logger = logging.getLogger(__name__)
import gradio as gr
from browser_use.agent.service import Agent
from playwright.async_api import async_playwright
from browser_use.browser.browser import Browser, BrowserConfig
from browser_use.browser.context import (
BrowserContextConfig,
BrowserContextWindowSize,
)
from langchain_ollama import ChatOllama
from playwright.async_api import async_playwright
from src.utils.agent_state import AgentState
from src.utils import utils
from src.agent.custom_agent import CustomAgent
from src.browser.custom_browser import CustomBrowser
from src.agent.custom_prompts import CustomSystemPrompt, CustomAgentMessagePrompt
from src.browser.custom_context import BrowserContextConfig, CustomBrowserContext
from src.controller.custom_controller import CustomController
from gradio.themes import Citrus, Default, Glass, Monochrome, Ocean, Origin, Soft, Base
from src.utils.default_config_settings import default_config, load_config_from_file, save_config_to_file, save_current_config, update_ui_from_config
from src.utils.utils import update_model_dropdown, get_latest_files, capture_screenshot
# Global variables for persistence
_global_browser = None
_global_browser_context = None
# Create the global agent state instance
_global_agent_state = AgentState()
async def stop_agent():
"""Request the agent to stop and update UI with enhanced feedback"""
global _global_agent_state, _global_browser_context, _global_browser
try:
# Request stop
_global_agent_state.request_stop()
# Update UI immediately
message = "Stop requested - the agent will halt at the next safe point"
logger.info(f"🛑 {message}")
# Return UI updates
return (
message, # errors_output
gr.update(value="Stopping...", interactive=False), # stop_button
gr.update(interactive=False), # run_button
)
except Exception as e:
error_msg = f"Error during stop: {str(e)}"
logger.error(error_msg)
return (
error_msg,
gr.update(value="Stop", interactive=True),
gr.update(interactive=True)
)
async def run_browser_agent(
agent_type,
llm_provider,
llm_model_name,
llm_temperature,
llm_base_url,
llm_api_key,
use_own_browser,
keep_browser_open,
headless,
disable_security,
window_w,
window_h,
save_recording_path,
save_agent_history_path,
save_trace_path,
enable_recording,
task,
add_infos,
max_steps,
use_vision,
max_actions_per_step,
tool_calling_method
):
global _global_agent_state
_global_agent_state.clear_stop() # Clear any previous stop requests
try:
# Disable recording if the checkbox is unchecked
if not enable_recording:
save_recording_path = None
# Ensure the recording directory exists if recording is enabled
if save_recording_path:
os.makedirs(save_recording_path, exist_ok=True)
# Get the list of existing videos before the agent runs
existing_videos = set()
if save_recording_path:
existing_videos = set(
glob.glob(os.path.join(save_recording_path, "*.[mM][pP]4"))
+ glob.glob(os.path.join(save_recording_path, "*.[wW][eE][bB][mM]"))
)
# Run the agent
llm = utils.get_llm_model(
provider=llm_provider,
model_name=llm_model_name,
temperature=llm_temperature,
base_url=llm_base_url,
api_key=llm_api_key,
)
if agent_type == "org":
final_result, errors, model_actions, model_thoughts, trace_file, history_file = await run_org_agent(
llm=llm,
use_own_browser=use_own_browser,
keep_browser_open=keep_browser_open,
headless=headless,
disable_security=disable_security,
window_w=window_w,
window_h=window_h,
save_recording_path=save_recording_path,
save_agent_history_path=save_agent_history_path,
save_trace_path=save_trace_path,
task=task,
max_steps=max_steps,
use_vision=use_vision,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method
)
elif agent_type == "custom":
final_result, errors, model_actions, model_thoughts, trace_file, history_file = await run_custom_agent(
llm=llm,
use_own_browser=use_own_browser,
keep_browser_open=keep_browser_open,
headless=headless,
disable_security=disable_security,
window_w=window_w,
window_h=window_h,
save_recording_path=save_recording_path,
save_agent_history_path=save_agent_history_path,
save_trace_path=save_trace_path,
task=task,
add_infos=add_infos,
max_steps=max_steps,
use_vision=use_vision,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method
)
else:
raise ValueError(f"Invalid agent type: {agent_type}")
# Get the list of videos after the agent runs (if recording is enabled)
latest_video = None
if save_recording_path:
new_videos = set(
glob.glob(os.path.join(save_recording_path, "*.[mM][pP]4"))
+ glob.glob(os.path.join(save_recording_path, "*.[wW][eE][bB][mM]"))
)
if new_videos - existing_videos:
latest_video = list(new_videos - existing_videos)[0] # Get the first new video
return (
final_result,
errors,
model_actions,
model_thoughts,
latest_video,
trace_file,
history_file,
gr.update(value="Stop", interactive=True), # Re-enable stop button
gr.update(interactive=True) # Re-enable run button
)
except gr.Error:
raise
except Exception as e:
import traceback
traceback.print_exc()
errors = str(e) + "\n" + traceback.format_exc()
return (
'', # final_result
errors, # errors
'', # model_actions
'', # model_thoughts
None, # latest_video
None, # history_file
None, # trace_file
gr.update(value="Stop", interactive=True), # Re-enable stop button
gr.update(interactive=True) # Re-enable run button
)
async def run_org_agent(
llm,
use_own_browser,
keep_browser_open,
headless,
disable_security,
window_w,
window_h,
save_recording_path,
save_agent_history_path,
save_trace_path,
task,
max_steps,
use_vision,
max_actions_per_step,
tool_calling_method
):
try:
global _global_browser, _global_browser_context, _global_agent_state
# Clear any previous stop request
_global_agent_state.clear_stop()
extra_chromium_args = [f"--window-size={window_w},{window_h}"]
if use_own_browser:
chrome_path = os.getenv("CHROME_PATH", None)
if chrome_path == "":
chrome_path = None
chrome_user_data = os.getenv("CHROME_USER_DATA", None)
if chrome_user_data:
extra_chromium_args += [f"--user-data-dir={chrome_user_data}"]
else:
chrome_path = None
if _global_browser is None:
_global_browser = Browser(
config=BrowserConfig(
headless=headless,
disable_security=disable_security,
chrome_instance_path=chrome_path,
extra_chromium_args=extra_chromium_args,
)
)
if _global_browser_context is None:
_global_browser_context = await _global_browser.new_context(
config=BrowserContextConfig(
trace_path=save_trace_path if save_trace_path else None,
save_recording_path=save_recording_path if save_recording_path else None,
no_viewport=False,
browser_window_size=BrowserContextWindowSize(
width=window_w, height=window_h
),
)
)
agent = Agent(
task=task,
llm=llm,
use_vision=use_vision,
browser=_global_browser,
browser_context=_global_browser_context,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method
)
history = await agent.run(max_steps=max_steps)
history_file = os.path.join(save_agent_history_path, f"{agent.agent_id}.json")
agent.save_history(history_file)
final_result = history.final_result()
errors = history.errors()
model_actions = history.model_actions()
model_thoughts = history.model_thoughts()
trace_file = get_latest_files(save_trace_path)
return final_result, errors, model_actions, model_thoughts, trace_file.get('.zip'), history_file
except Exception as e:
import traceback
traceback.print_exc()
errors = str(e) + "\n" + traceback.format_exc()
return '', errors, '', '', None, None
finally:
# Handle cleanup based on persistence configuration
if not keep_browser_open:
if _global_browser_context:
await _global_browser_context.close()
_global_browser_context = None
if _global_browser:
await _global_browser.close()
_global_browser = None
async def run_custom_agent(
llm,
use_own_browser,
keep_browser_open,
headless,
disable_security,
window_w,
window_h,
save_recording_path,
save_agent_history_path,
save_trace_path,
task,
add_infos,
max_steps,
use_vision,
max_actions_per_step,
tool_calling_method
):
try:
global _global_browser, _global_browser_context, _global_agent_state
# Clear any previous stop request
_global_agent_state.clear_stop()
extra_chromium_args = [f"--window-size={window_w},{window_h}"]
if use_own_browser:
chrome_path = os.getenv("CHROME_PATH", None)
if chrome_path == "":
chrome_path = None
chrome_user_data = os.getenv("CHROME_USER_DATA", None)
if chrome_user_data:
extra_chromium_args += [f"--user-data-dir={chrome_user_data}"]
else:
chrome_path = None
controller = CustomController()
# Initialize global browser if needed
if _global_browser is None:
_global_browser = CustomBrowser(
config=BrowserConfig(
headless=headless,
disable_security=disable_security,
chrome_instance_path=chrome_path,
extra_chromium_args=extra_chromium_args,
)
)
if _global_browser_context is None:
_global_browser_context = await _global_browser.new_context(
config=BrowserContextConfig(
trace_path=save_trace_path if save_trace_path else None,
save_recording_path=save_recording_path if save_recording_path else None,
no_viewport=False,
browser_window_size=BrowserContextWindowSize(
width=window_w, height=window_h
),
)
)
# Create and run agent
agent = CustomAgent(
task=task,
add_infos=add_infos,
use_vision=use_vision,
llm=llm,
browser=_global_browser,
browser_context=_global_browser_context,
controller=controller,
system_prompt_class=CustomSystemPrompt,
agent_prompt_class=CustomAgentMessagePrompt,
max_actions_per_step=max_actions_per_step,
agent_state=_global_agent_state,
tool_calling_method=tool_calling_method
)
history = await agent.run(max_steps=max_steps)
history_file = os.path.join(save_agent_history_path, f"{agent.agent_id}.json")
agent.save_history(history_file)
final_result = history.final_result()
errors = history.errors()
model_actions = history.model_actions()
model_thoughts = history.model_thoughts()
trace_file = get_latest_files(save_trace_path)
return final_result, errors, model_actions, model_thoughts, trace_file.get('.zip'), history_file
except Exception as e:
import traceback
traceback.print_exc()
errors = str(e) + "\n" + traceback.format_exc()
return '', errors, '', '', None, None
finally:
# Handle cleanup based on persistence configuration
if not keep_browser_open:
if _global_browser_context:
await _global_browser_context.close()
_global_browser_context = None
if _global_browser:
await _global_browser.close()
_global_browser = None
async def run_with_stream(
agent_type,
llm_provider,
llm_model_name,
llm_temperature,
llm_base_url,
llm_api_key,
use_own_browser,
keep_browser_open,
headless,
disable_security,
window_w,
window_h,
save_recording_path,
save_agent_history_path,
save_trace_path,
enable_recording,
task,
add_infos,
max_steps,
use_vision,
max_actions_per_step,
tool_calling_method
):
global _global_agent_state
stream_vw = 80
stream_vh = int(80 * window_h // window_w)
if not headless:
result = await run_browser_agent(
agent_type=agent_type,
llm_provider=llm_provider,
llm_model_name=llm_model_name,
llm_temperature=llm_temperature,
llm_base_url=llm_base_url,
llm_api_key=llm_api_key,
use_own_browser=use_own_browser,
keep_browser_open=keep_browser_open,
headless=headless,
disable_security=disable_security,
window_w=window_w,
window_h=window_h,
save_recording_path=save_recording_path,
save_agent_history_path=save_agent_history_path,
save_trace_path=save_trace_path,
enable_recording=enable_recording,
task=task,
add_infos=add_infos,
max_steps=max_steps,
use_vision=use_vision,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method
)
# Add HTML content at the start of the result array
html_content = f"<h1 style='width:{stream_vw}vw; height:{stream_vh}vh'>Using browser...</h1>"
yield [html_content] + list(result)
else:
try:
_global_agent_state.clear_stop()
# Run the browser agent in the background
agent_task = asyncio.create_task(
run_browser_agent(
agent_type=agent_type,
llm_provider=llm_provider,
llm_model_name=llm_model_name,
llm_temperature=llm_temperature,
llm_base_url=llm_base_url,
llm_api_key=llm_api_key,
use_own_browser=use_own_browser,
keep_browser_open=keep_browser_open,
headless=headless,
disable_security=disable_security,
window_w=window_w,
window_h=window_h,
save_recording_path=save_recording_path,
save_agent_history_path=save_agent_history_path,
save_trace_path=save_trace_path,
enable_recording=enable_recording,
task=task,
add_infos=add_infos,
max_steps=max_steps,
use_vision=use_vision,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method
)
)
# Initialize values for streaming
html_content = f"<h1 style='width:{stream_vw}vw; height:{stream_vh}vh'>Using browser...</h1>"
final_result = errors = model_actions = model_thoughts = ""
latest_videos = trace = history_file = None
# Periodically update the stream while the agent task is running
while not agent_task.done():
try:
encoded_screenshot = await capture_screenshot(_global_browser_context)
if encoded_screenshot is not None:
html_content = f'<img src="data:image/jpeg;base64,{encoded_screenshot}" style="width:{stream_vw}vw; height:{stream_vh}vh ; border:1px solid #ccc;">'
else:
html_content = f"<h1 style='width:{stream_vw}vw; height:{stream_vh}vh'>Waiting for browser session...</h1>"
except Exception as e:
html_content = f"<h1 style='width:{stream_vw}vw; height:{stream_vh}vh'>Waiting for browser session...</h1>"
if _global_agent_state and _global_agent_state.is_stop_requested():
yield [
html_content,
final_result,
errors,
model_actions,
model_thoughts,
latest_videos,
trace,
history_file,
gr.update(value="Stopping...", interactive=False), # stop_button
gr.update(interactive=False), # run_button
]
break
else:
yield [
html_content,
final_result,
errors,
model_actions,
model_thoughts,
latest_videos,
trace,
history_file,
gr.update(value="Stop", interactive=True), # Re-enable stop button
gr.update(interactive=True) # Re-enable run button
]
await asyncio.sleep(0.05)
# Once the agent task completes, get the results
try:
result = await agent_task
final_result, errors, model_actions, model_thoughts, latest_videos, trace, history_file, stop_button, run_button = result
except gr.Error:
final_result = ""
model_actions = ""
model_thoughts = ""
latest_videos = trace = history_file = None
except Exception as e:
errors = f"Agent error: {str(e)}"
yield [
html_content,
final_result,
errors,
model_actions,
model_thoughts,
latest_videos,
trace,
history_file,
stop_button,
run_button
]
except Exception as e:
import traceback
yield [
f"<h1 style='width:{stream_vw}vw; height:{stream_vh}vh'>Waiting for browser session...</h1>",
"",
f"Error: {str(e)}\n{traceback.format_exc()}",
"",
"",
None,
None,
None,
gr.update(value="Stop", interactive=True), # Re-enable stop button
gr.update(interactive=True) # Re-enable run button
]
# Define the theme map globally
theme_map = {
"Default": Default(),
"Soft": Soft(),
"Monochrome": Monochrome(),
"Glass": Glass(),
"Origin": Origin(),
"Citrus": Citrus(),
"Ocean": Ocean(),
"Base": Base()
}
async def close_global_browser():
global _global_browser, _global_browser_context
if _global_browser_context:
await _global_browser_context.close()
_global_browser_context = None
if _global_browser:
await _global_browser.close()
_global_browser = None
def create_ui(config, theme_name="Ocean"):
css = """
.gradio-container {
max-width: 1200px !important;
margin: auto !important;
padding-top: 20px !important;
}
.header-text {
text-align: center;
margin-bottom: 30px;
}
.theme-section {
margin-bottom: 20px;
padding: 15px;
border-radius: 10px;
}
"""
with gr.Blocks(
title="Browser Use WebUI", theme=theme_map[theme_name], css=css
) as demo:
with gr.Row():
gr.Markdown(
"""
# 🌐 Browser Use WebUI
### Control your browser with AI assistance
""",
elem_classes=["header-text"],
)
with gr.Tabs() as tabs:
with gr.TabItem("⚙️ Agent Settings", id=1):
with gr.Group():
agent_type = gr.Radio(
["org", "custom"],
label="Agent Type",
value=config['agent_type'],
info="Select the type of agent to use",
)
with gr.Column():
max_steps = gr.Slider(
minimum=1,
maximum=200,
value=config['max_steps'],
step=1,
label="Max Run Steps",
info="Maximum number of steps the agent will take",
)
max_actions_per_step = gr.Slider(
minimum=1,
maximum=20,
value=config['max_actions_per_step'],
step=1,
label="Max Actions per Step",
info="Maximum number of actions the agent will take per step",
)
with gr.Column():
use_vision = gr.Checkbox(
label="Use Vision",
value=config['use_vision'],
info="Enable visual processing capabilities",
)
tool_calling_method = gr.Dropdown(
label="Tool Calling Method",
value=config['tool_calling_method'],
interactive=True,
allow_custom_value=True, # Allow users to input custom model names
choices=["auto", "json_schema", "function_calling"],
info="Tool Calls Funtion Name",
visible=False
)
with gr.TabItem("🔧 LLM Configuration", id=2):
with gr.Group():
llm_provider = gr.Dropdown(
choices=[provider for provider,model in utils.model_names.items()],
label="LLM Provider",
value=config['llm_provider'],
info="Select your preferred language model provider"
)
llm_model_name = gr.Dropdown(
label="Model Name",
choices=utils.model_names['openai'],
value=config['llm_model_name'],
interactive=True,
allow_custom_value=True, # Allow users to input custom model names
info="Select a model from the dropdown or type a custom model name"
)
llm_temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=config['llm_temperature'],
step=0.1,
label="Temperature",
info="Controls randomness in model outputs"
)
with gr.Row():
llm_base_url = gr.Textbox(
label="Base URL",
value=config['llm_base_url'],
info="API endpoint URL (if required)"
)
llm_api_key = gr.Textbox(
label="API Key",
type="password",
value=config['llm_api_key'],
info="Your API key (leave blank to use .env)"
)
with gr.TabItem("🌐 Browser Settings", id=3):
with gr.Group():
with gr.Row():
use_own_browser = gr.Checkbox(
label="Use Own Browser",
value=config['use_own_browser'],
info="Use your existing browser instance",
)
keep_browser_open = gr.Checkbox(
label="Keep Browser Open",
value=config['keep_browser_open'],
info="Keep Browser Open between Tasks",
)
headless = gr.Checkbox(
label="Headless Mode",
value=config['headless'],
info="Run browser without GUI",
)
disable_security = gr.Checkbox(
label="Disable Security",
value=config['disable_security'],
info="Disable browser security features",
)
enable_recording = gr.Checkbox(
label="Enable Recording",
value=config['enable_recording'],
info="Enable saving browser recordings",
)
with gr.Row():
window_w = gr.Number(
label="Window Width",
value=config['window_w'],
info="Browser window width",
)
window_h = gr.Number(
label="Window Height",
value=config['window_h'],
info="Browser window height",
)
save_recording_path = gr.Textbox(
label="Recording Path",
placeholder="e.g. ./tmp/record_videos",
value=config['save_recording_path'],
info="Path to save browser recordings",
interactive=True, # Allow editing only if recording is enabled
)
save_trace_path = gr.Textbox(
label="Trace Path",
placeholder="e.g. ./tmp/traces",
value=config['save_trace_path'],
info="Path to save Agent traces",
interactive=True,
)
save_agent_history_path = gr.Textbox(
label="Agent History Save Path",
placeholder="e.g., ./tmp/agent_history",
value=config['save_agent_history_path'],
info="Specify the directory where agent history should be saved.",
interactive=True,
)
with gr.TabItem("🤖 Run Agent", id=4):
task = gr.Textbox(
label="Task Description",
lines=4,
placeholder="Enter your task here...",
value=config['task'],
info="Describe what you want the agent to do",
)
add_infos = gr.Textbox(
label="Additional Information",
lines=3,
placeholder="Add any helpful context or instructions...",
info="Optional hints to help the LLM complete the task",
)
with gr.Row():
run_button = gr.Button("▶️ Run Agent", variant="primary", scale=2)
stop_button = gr.Button("⏹️ Stop", variant="stop", scale=1)
with gr.Row():
browser_view = gr.HTML(
value="<h1 style='width:80vw; height:50vh'>Waiting for browser session...</h1>",
label="Live Browser View",
)
with gr.TabItem("📁 Configuration", id=5):
with gr.Group():
config_file_input = gr.File(
label="Load Config File",
file_types=[".pkl"],
interactive=True
)
load_config_button = gr.Button("Load Existing Config From File", variant="primary")
save_config_button = gr.Button("Save Current Config", variant="primary")
config_status = gr.Textbox(
label="Status",
lines=2,
interactive=False
)
load_config_button.click(
fn=update_ui_from_config,
inputs=[config_file_input],
outputs=[
agent_type, max_steps, max_actions_per_step, use_vision, tool_calling_method,
llm_provider, llm_model_name, llm_temperature, llm_base_url, llm_api_key,
use_own_browser, keep_browser_open, headless, disable_security, enable_recording,
window_w, window_h, save_recording_path, save_trace_path, save_agent_history_path,
task, config_status
]
)
save_config_button.click(
fn=save_current_config,
inputs=[
agent_type, max_steps, max_actions_per_step, use_vision, tool_calling_method,
llm_provider, llm_model_name, llm_temperature, llm_base_url, llm_api_key,
use_own_browser, keep_browser_open, headless, disable_security,
enable_recording, window_w, window_h, save_recording_path, save_trace_path,
save_agent_history_path, task,
],
outputs=[config_status]
)
with gr.TabItem("📊 Results", id=6):
with gr.Group():
recording_display = gr.Video(label="Latest Recording")
gr.Markdown("### Results")
with gr.Row():
with gr.Column():
final_result_output = gr.Textbox(
label="Final Result", lines=3, show_label=True
)
with gr.Column():
errors_output = gr.Textbox(
label="Errors", lines=3, show_label=True
)
with gr.Row():
with gr.Column():
model_actions_output = gr.Textbox(
label="Model Actions", lines=3, show_label=True
)
with gr.Column():
model_thoughts_output = gr.Textbox(
label="Model Thoughts", lines=3, show_label=True
)
trace_file = gr.File(label="Trace File")
agent_history_file = gr.File(label="Agent History")
# Bind the stop button click event after errors_output is defined
stop_button.click(
fn=stop_agent,
inputs=[],
outputs=[errors_output, stop_button, run_button],
)
# Run button click handler
run_button.click(
fn=run_with_stream,
inputs=[
agent_type, llm_provider, llm_model_name, llm_temperature, llm_base_url, llm_api_key,
use_own_browser, keep_browser_open, headless, disable_security, window_w, window_h,
save_recording_path, save_agent_history_path, save_trace_path, # Include the new path
enable_recording, task, add_infos, max_steps, use_vision, max_actions_per_step, tool_calling_method
],
outputs=[
browser_view, # Browser view
final_result_output, # Final result
errors_output, # Errors
model_actions_output, # Model actions
model_thoughts_output, # Model thoughts
recording_display, # Latest recording
trace_file, # Trace file
agent_history_file, # Agent history file
stop_button, # Stop button
run_button # Run button
],
)
with gr.TabItem("🎥 Recordings", id=7):
def list_recordings(save_recording_path):
if not os.path.exists(save_recording_path):
return []
# Get all video files
recordings = glob.glob(os.path.join(save_recording_path, "*.[mM][pP]4")) + glob.glob(os.path.join(save_recording_path, "*.[wW][eE][bB][mM]"))
# Sort recordings by creation time (oldest first)
recordings.sort(key=os.path.getctime)
# Add numbering to the recordings
numbered_recordings = []
for idx, recording in enumerate(recordings, start=1):
filename = os.path.basename(recording)
numbered_recordings.append((recording, f"{idx}. {filename}"))
return numbered_recordings
recordings_gallery = gr.Gallery(
label="Recordings",
value=list_recordings(config['save_recording_path']),
columns=3,
height="auto",
object_fit="contain"
)
refresh_button = gr.Button("🔄 Refresh Recordings", variant="secondary")
refresh_button.click(
fn=list_recordings,
inputs=save_recording_path,
outputs=recordings_gallery
)
# Attach the callback to the LLM provider dropdown
llm_provider.change(
lambda provider, api_key, base_url: update_model_dropdown(provider, api_key, base_url),
inputs=[llm_provider, llm_api_key, llm_base_url],
outputs=llm_model_name
)
# Add this after defining the components
enable_recording.change(
lambda enabled: gr.update(interactive=enabled),
inputs=enable_recording,
outputs=save_recording_path
)
use_own_browser.change(fn=close_global_browser)
keep_browser_open.change(fn=close_global_browser)
return demo
def main():
parser = argparse.ArgumentParser(description="Gradio UI for Browser Agent")
parser.add_argument("--ip", type=str, default="127.0.0.1", help="IP address to bind to")
parser.add_argument("--port", type=int, default=7788, help="Port to listen on")
parser.add_argument("--theme", type=str, default="Ocean", choices=theme_map.keys(), help="Theme to use for the UI")
parser.add_argument("--dark-mode", action="store_true", help="Enable dark mode")
args = parser.parse_args()
config_dict = default_config()
demo = create_ui(config_dict, theme_name=args.theme)
demo.launch(server_name=args.ip, server_port=args.port)
if __name__ == '__main__':
main()