591 lines
21 KiB
Python
591 lines
21 KiB
Python
# -*- coding: utf-8 -*-
|
|
# @Time : 2025/1/1
|
|
# @Author : wenshao
|
|
# @Email : wenshaoguo1026@gmail.com
|
|
# @Project : browser-use-webui
|
|
# @FileName: webui.py
|
|
|
|
import pdb
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import argparse
|
|
import os
|
|
|
|
import gradio as gr
|
|
import argparse
|
|
|
|
|
|
from gradio.themes import Base, Default, Soft, Monochrome, Glass, Origin, Citrus, Ocean
|
|
import asyncio
|
|
import os, glob
|
|
from browser_use.agent.service import Agent
|
|
from browser_use.browser.browser import Browser, BrowserConfig
|
|
from browser_use.browser.context import (
|
|
BrowserContextConfig,
|
|
BrowserContextWindowSize,
|
|
)
|
|
from playwright.async_api import async_playwright
|
|
|
|
from src.agent.custom_agent import CustomAgent
|
|
from src.agent.custom_prompts import CustomSystemPrompt
|
|
from src.browser.custom_browser import CustomBrowser
|
|
from src.browser.custom_context import BrowserContextConfig
|
|
from src.controller.custom_controller import CustomController
|
|
from src.utils import utils
|
|
from src.utils.utils import update_model_dropdown
|
|
|
|
async def run_browser_agent(
|
|
agent_type,
|
|
llm_provider,
|
|
llm_model_name,
|
|
llm_temperature,
|
|
llm_base_url,
|
|
llm_api_key,
|
|
use_own_browser,
|
|
headless,
|
|
disable_security,
|
|
window_w,
|
|
window_h,
|
|
save_recording_path,
|
|
save_trace_path,
|
|
enable_recording,
|
|
task,
|
|
add_infos,
|
|
max_steps,
|
|
use_vision,
|
|
max_actions_per_step,
|
|
tool_call_in_content
|
|
):
|
|
# Disable recording if the checkbox is unchecked
|
|
if not enable_recording:
|
|
save_recording_path = None
|
|
|
|
# Ensure the recording directory exists if recording is enabled
|
|
if save_recording_path:
|
|
os.makedirs(save_recording_path, exist_ok=True)
|
|
|
|
# Get the list of existing videos before the agent runs
|
|
existing_videos = set()
|
|
if save_recording_path:
|
|
existing_videos = set(
|
|
glob.glob(os.path.join(save_recording_path, "*.[mM][pP]4"))
|
|
+ glob.glob(os.path.join(save_recording_path, "*.[wW][eE][bB][mM]"))
|
|
)
|
|
|
|
# Run the agent
|
|
llm = utils.get_llm_model(
|
|
provider=llm_provider,
|
|
model_name=llm_model_name,
|
|
temperature=llm_temperature,
|
|
base_url=llm_base_url,
|
|
api_key=llm_api_key,
|
|
)
|
|
if agent_type == "org":
|
|
final_result, errors, model_actions, model_thoughts = await run_org_agent(
|
|
llm=llm,
|
|
headless=headless,
|
|
disable_security=disable_security,
|
|
window_w=window_w,
|
|
window_h=window_h,
|
|
save_recording_path=save_recording_path,
|
|
save_trace_path=save_trace_path,
|
|
task=task,
|
|
max_steps=max_steps,
|
|
use_vision=use_vision,
|
|
max_actions_per_step=max_actions_per_step,
|
|
tool_call_in_content=tool_call_in_content
|
|
)
|
|
elif agent_type == "custom":
|
|
final_result, errors, model_actions, model_thoughts = await run_custom_agent(
|
|
llm=llm,
|
|
use_own_browser=use_own_browser,
|
|
headless=headless,
|
|
disable_security=disable_security,
|
|
window_w=window_w,
|
|
window_h=window_h,
|
|
save_recording_path=save_recording_path,
|
|
save_trace_path=save_trace_path,
|
|
task=task,
|
|
add_infos=add_infos,
|
|
max_steps=max_steps,
|
|
use_vision=use_vision,
|
|
max_actions_per_step=max_actions_per_step,
|
|
tool_call_in_content=tool_call_in_content
|
|
)
|
|
else:
|
|
raise ValueError(f"Invalid agent type: {agent_type}")
|
|
|
|
# Get the list of videos after the agent runs (if recording is enabled)
|
|
latest_video = None
|
|
if save_recording_path:
|
|
new_videos = set(
|
|
glob.glob(os.path.join(save_recording_path, "*.[mM][pP]4"))
|
|
+ glob.glob(os.path.join(save_recording_path, "*.[wW][eE][bB][mM]"))
|
|
)
|
|
if new_videos - existing_videos:
|
|
latest_video = list(new_videos - existing_videos)[0] # Get the first new video
|
|
|
|
return final_result, errors, model_actions, model_thoughts, latest_video
|
|
|
|
|
|
async def run_org_agent(
|
|
llm,
|
|
headless,
|
|
disable_security,
|
|
window_w,
|
|
window_h,
|
|
save_recording_path,
|
|
save_trace_path,
|
|
task,
|
|
max_steps,
|
|
use_vision,
|
|
max_actions_per_step,
|
|
tool_call_in_content
|
|
|
|
):
|
|
browser = Browser(
|
|
config=BrowserConfig(
|
|
headless=headless,
|
|
disable_security=disable_security,
|
|
extra_chromium_args=[f"--window-size={window_w},{window_h}"],
|
|
)
|
|
)
|
|
async with await browser.new_context(
|
|
config=BrowserContextConfig(
|
|
trace_path=save_trace_path if save_trace_path else None,
|
|
save_recording_path=save_recording_path if save_recording_path else None,
|
|
no_viewport=False,
|
|
browser_window_size=BrowserContextWindowSize(
|
|
width=window_w, height=window_h
|
|
),
|
|
)
|
|
) as browser_context:
|
|
agent = Agent(
|
|
task=task,
|
|
llm=llm,
|
|
use_vision=use_vision,
|
|
browser_context=browser_context,
|
|
max_actions_per_step=max_actions_per_step,
|
|
tool_call_in_content=tool_call_in_content
|
|
)
|
|
history = await agent.run(max_steps=max_steps)
|
|
|
|
final_result = history.final_result()
|
|
errors = history.errors()
|
|
model_actions = history.model_actions()
|
|
model_thoughts = history.model_thoughts()
|
|
await browser.close()
|
|
return final_result, errors, model_actions, model_thoughts
|
|
|
|
|
|
async def run_custom_agent(
|
|
llm,
|
|
use_own_browser,
|
|
headless,
|
|
disable_security,
|
|
window_w,
|
|
window_h,
|
|
save_recording_path,
|
|
save_trace_path,
|
|
task,
|
|
add_infos,
|
|
max_steps,
|
|
use_vision,
|
|
max_actions_per_step,
|
|
tool_call_in_content
|
|
):
|
|
controller = CustomController()
|
|
playwright = None
|
|
browser_context_ = None
|
|
browser = None # Initialize browser to None
|
|
try:
|
|
if use_own_browser:
|
|
playwright = await async_playwright().start()
|
|
chrome_exe = os.getenv("CHROME_PATH", "")
|
|
chrome_use_data = os.getenv("CHROME_USER_DATA", "")
|
|
|
|
if chrome_exe == "":
|
|
chrome_exe = None
|
|
elif not os.path.exists(chrome_exe):
|
|
raise ValueError(f"Chrome executable not found at {chrome_exe}")
|
|
|
|
if chrome_use_data == "":
|
|
chrome_use_data = None
|
|
|
|
browser_context_ = await playwright.chromium.launch_persistent_context(
|
|
user_data_dir=chrome_use_data,
|
|
executable_path=chrome_exe,
|
|
no_viewport=False,
|
|
headless=headless, # 保持浏览器窗口可见
|
|
user_agent=(
|
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
|
|
"(KHTML, like Gecko) Chrome/85.0.4183.102 Safari/537.36"
|
|
),
|
|
java_script_enabled=True,
|
|
bypass_csp=disable_security,
|
|
ignore_https_errors=disable_security,
|
|
record_video_dir=save_recording_path if save_recording_path else None,
|
|
record_video_size={"width": window_w, "height": window_h},
|
|
)
|
|
else:
|
|
browser_context_ = None
|
|
|
|
browser = CustomBrowser(
|
|
config=BrowserConfig(
|
|
headless=headless,
|
|
disable_security=disable_security,
|
|
extra_chromium_args=[f"--window-size={window_w},{window_h}"],
|
|
)
|
|
)
|
|
async with await browser.new_context(
|
|
config=BrowserContextConfig(
|
|
trace_path=save_trace_path if save_trace_path else None,
|
|
save_recording_path=save_recording_path
|
|
if save_recording_path
|
|
else None,
|
|
no_viewport=False,
|
|
browser_window_size=BrowserContextWindowSize(
|
|
width=window_w, height=window_h
|
|
),
|
|
),
|
|
context=browser_context_,
|
|
) as browser_context:
|
|
agent = CustomAgent(
|
|
task=task,
|
|
add_infos=add_infos,
|
|
use_vision=use_vision,
|
|
llm=llm,
|
|
browser_context=browser_context,
|
|
controller=controller,
|
|
system_prompt_class=CustomSystemPrompt,
|
|
max_actions_per_step=max_actions_per_step,
|
|
tool_call_in_content=tool_call_in_content
|
|
)
|
|
history = await agent.run(max_steps=max_steps)
|
|
|
|
final_result = history.final_result()
|
|
errors = history.errors()
|
|
model_actions = history.model_actions()
|
|
model_thoughts = history.model_thoughts()
|
|
|
|
except Exception as e:
|
|
import traceback
|
|
|
|
traceback.print_exc()
|
|
final_result = ""
|
|
errors = str(e) + "\n" + traceback.format_exc()
|
|
model_actions = ""
|
|
model_thoughts = ""
|
|
finally:
|
|
# Close persistent context if it was initialized
|
|
if browser_context_:
|
|
await browser_context_.close()
|
|
|
|
# Stop Playwright if it was started
|
|
if playwright:
|
|
await playwright.stop()
|
|
|
|
# Close the browser if it was initialized
|
|
if browser:
|
|
await browser.close()
|
|
|
|
return final_result, errors, model_actions, model_thoughts
|
|
|
|
# Define the theme map globally
|
|
theme_map = {
|
|
"Default": Default(),
|
|
"Soft": Soft(),
|
|
"Monochrome": Monochrome(),
|
|
"Glass": Glass(),
|
|
"Origin": Origin(),
|
|
"Citrus": Citrus(),
|
|
"Ocean": Ocean(),
|
|
"Base": Base()
|
|
}
|
|
|
|
|
|
def create_ui(theme_name="Ocean"):
|
|
css = """
|
|
.gradio-container {
|
|
max-width: 1200px !important;
|
|
margin: auto !important;
|
|
padding-top: 20px !important;
|
|
}
|
|
.header-text {
|
|
text-align: center;
|
|
margin-bottom: 30px;
|
|
}
|
|
.theme-section {
|
|
margin-bottom: 20px;
|
|
padding: 15px;
|
|
border-radius: 10px;
|
|
}
|
|
"""
|
|
|
|
js = """
|
|
function refresh() {
|
|
const url = new URL(window.location);
|
|
if (url.searchParams.get('__theme') !== 'dark') {
|
|
url.searchParams.set('__theme', 'dark');
|
|
window.location.href = url.href;
|
|
}
|
|
}
|
|
"""
|
|
|
|
with gr.Blocks(
|
|
title="Browser Use WebUI", theme=theme_map[theme_name], css=css, js=js
|
|
) as demo:
|
|
with gr.Row():
|
|
gr.Markdown(
|
|
"""
|
|
# 🌐 Browser Use WebUI
|
|
### Control your browser with AI assistance
|
|
""",
|
|
elem_classes=["header-text"],
|
|
)
|
|
|
|
with gr.Tabs() as tabs:
|
|
with gr.TabItem("⚙️ Agent Settings", id=1):
|
|
with gr.Group():
|
|
agent_type = gr.Radio(
|
|
["org", "custom"],
|
|
label="Agent Type",
|
|
value="custom",
|
|
info="Select the type of agent to use",
|
|
)
|
|
max_steps = gr.Slider(
|
|
minimum=1,
|
|
maximum=200,
|
|
value=100,
|
|
step=1,
|
|
label="Max Run Steps",
|
|
info="Maximum number of steps the agent will take",
|
|
)
|
|
max_actions_per_step = gr.Slider(
|
|
minimum=1,
|
|
maximum=20,
|
|
value=10,
|
|
step=1,
|
|
label="Max Actions per Step",
|
|
info="Maximum number of actions the agent will take per step",
|
|
)
|
|
use_vision = gr.Checkbox(
|
|
label="Use Vision",
|
|
value=True,
|
|
info="Enable visual processing capabilities",
|
|
)
|
|
tool_call_in_content = gr.Checkbox(
|
|
label="Use Tool Calls in Content",
|
|
value=True,
|
|
info="Enable Tool Calls in content",
|
|
)
|
|
|
|
with gr.TabItem("🔧 LLM Configuration", id=2):
|
|
with gr.Group():
|
|
llm_provider = gr.Dropdown(
|
|
["anthropic", "openai", "deepseek", "gemini", "ollama", "azure_openai"],
|
|
label="LLM Provider",
|
|
value="openai",
|
|
info="Select your preferred language model provider"
|
|
)
|
|
llm_model_name = gr.Dropdown(
|
|
label="Model Name",
|
|
choices=["gpt-4o", "gpt-4o-mini", "gpt-4", "gpt-3.5-turbo",],
|
|
value="gpt-4o",
|
|
interactive=True,
|
|
allow_custom_value=True, # Allow users to input custom model names
|
|
info="Select a model from the dropdown or type a custom model name"
|
|
)
|
|
llm_temperature = gr.Slider(
|
|
minimum=0.0,
|
|
maximum=2.0,
|
|
value=1.0,
|
|
step=0.1,
|
|
label="Temperature",
|
|
info="Controls randomness in model outputs"
|
|
)
|
|
with gr.Row():
|
|
llm_base_url = gr.Textbox(
|
|
label="Base URL",
|
|
value=os.getenv(f"{llm_provider.value.upper()}_BASE_URL ", ""), # Default to .env value
|
|
info="API endpoint URL (if required)"
|
|
)
|
|
llm_api_key = gr.Textbox(
|
|
label="API Key",
|
|
type="password",
|
|
value=os.getenv(f"{llm_provider.value.upper()}_API_KEY", ""), # Default to .env value
|
|
info="Your API key (leave blank to use .env)"
|
|
)
|
|
|
|
with gr.TabItem("🌐 Browser Settings", id=3):
|
|
with gr.Group():
|
|
with gr.Row():
|
|
use_own_browser = gr.Checkbox(
|
|
label="Use Own Browser",
|
|
value=False,
|
|
info="Use your existing browser instance",
|
|
)
|
|
headless = gr.Checkbox(
|
|
label="Headless Mode",
|
|
value=False,
|
|
info="Run browser without GUI",
|
|
)
|
|
disable_security = gr.Checkbox(
|
|
label="Disable Security",
|
|
value=True,
|
|
info="Disable browser security features",
|
|
)
|
|
enable_recording = gr.Checkbox(
|
|
label="Enable Recording",
|
|
value=True,
|
|
info="Enable saving browser recordings",
|
|
)
|
|
|
|
with gr.Row():
|
|
window_w = gr.Number(
|
|
label="Window Width",
|
|
value=1280,
|
|
info="Browser window width",
|
|
)
|
|
window_h = gr.Number(
|
|
label="Window Height",
|
|
value=1100,
|
|
info="Browser window height",
|
|
)
|
|
|
|
save_recording_path = gr.Textbox(
|
|
label="Recording Path",
|
|
placeholder="e.g. ./tmp/record_videos",
|
|
value="./tmp/record_videos",
|
|
info="Path to save browser recordings",
|
|
interactive=True, # Allow editing only if recording is enabled
|
|
)
|
|
|
|
save_trace_path = gr.Textbox(
|
|
label="Trace Path",
|
|
placeholder="e.g. ./tmp/traces",
|
|
value="./tmp/traces",
|
|
info="Path to save Agent traces",
|
|
interactive=True,
|
|
)
|
|
|
|
with gr.TabItem("🤖 Run Agent", id=4):
|
|
task = gr.Textbox(
|
|
label="Task Description",
|
|
lines=4,
|
|
placeholder="Enter your task here...",
|
|
value="go to google.com and type 'OpenAI' click search and give me the first url",
|
|
info="Describe what you want the agent to do",
|
|
)
|
|
add_infos = gr.Textbox(
|
|
label="Additional Information",
|
|
lines=3,
|
|
placeholder="Add any helpful context or instructions...",
|
|
info="Optional hints to help the LLM complete the task",
|
|
)
|
|
|
|
with gr.Row():
|
|
run_button = gr.Button("▶️ Run Agent", variant="primary", scale=2)
|
|
stop_button = gr.Button("⏹️ Stop", variant="stop", scale=1)
|
|
|
|
with gr.TabItem("📊 Results", id=5):
|
|
recording_display = gr.Video(label="Latest Recording")
|
|
|
|
with gr.Group():
|
|
gr.Markdown("### Results")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
final_result_output = gr.Textbox(
|
|
label="Final Result", lines=3, show_label=True
|
|
)
|
|
with gr.Column():
|
|
errors_output = gr.Textbox(
|
|
label="Errors", lines=3, show_label=True
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
model_actions_output = gr.Textbox(
|
|
label="Model Actions", lines=3, show_label=True
|
|
)
|
|
with gr.Column():
|
|
model_thoughts_output = gr.Textbox(
|
|
label="Model Thoughts", lines=3, show_label=True
|
|
)
|
|
|
|
with gr.TabItem("🎥 Recordings", id=6):
|
|
def list_recordings(save_recording_path):
|
|
if not os.path.exists(save_recording_path):
|
|
return []
|
|
|
|
# Get all video files
|
|
recordings = glob.glob(os.path.join(save_recording_path, "*.[mM][pP]4")) + glob.glob(os.path.join(save_recording_path, "*.[wW][eE][bB][mM]"))
|
|
|
|
# Sort recordings by creation time (oldest first)
|
|
recordings.sort(key=os.path.getctime)
|
|
|
|
# Add numbering to the recordings
|
|
numbered_recordings = []
|
|
for idx, recording in enumerate(recordings, start=1):
|
|
filename = os.path.basename(recording)
|
|
numbered_recordings.append((recording, f"{idx}. {filename}"))
|
|
|
|
return numbered_recordings
|
|
|
|
recordings_gallery = gr.Gallery(
|
|
label="Recordings",
|
|
value=list_recordings("./tmp/record_videos"),
|
|
columns=3,
|
|
height="auto",
|
|
object_fit="contain"
|
|
)
|
|
|
|
refresh_button = gr.Button("🔄 Refresh Recordings", variant="secondary")
|
|
refresh_button.click(
|
|
fn=list_recordings,
|
|
inputs=save_recording_path,
|
|
outputs=recordings_gallery
|
|
)
|
|
|
|
# Attach the callback to the LLM provider dropdown
|
|
llm_provider.change(
|
|
lambda provider, api_key, base_url: update_model_dropdown(provider, api_key, base_url),
|
|
inputs=[llm_provider, llm_api_key, llm_base_url],
|
|
outputs=llm_model_name
|
|
)
|
|
|
|
# Add this after defining the components
|
|
enable_recording.change(
|
|
lambda enabled: gr.update(interactive=enabled),
|
|
inputs=enable_recording,
|
|
outputs=save_recording_path
|
|
)
|
|
|
|
# Run button click handler
|
|
run_button.click(
|
|
fn=run_browser_agent,
|
|
inputs=[
|
|
agent_type, llm_provider, llm_model_name, llm_temperature, llm_base_url, llm_api_key,
|
|
use_own_browser, headless, disable_security, window_w, window_h, save_recording_path, save_trace_path,
|
|
enable_recording, task, add_infos, max_steps, use_vision, max_actions_per_step, tool_call_in_content
|
|
],
|
|
outputs=[final_result_output, errors_output, model_actions_output, model_thoughts_output, recording_display],
|
|
)
|
|
|
|
return demo
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Gradio UI for Browser Agent")
|
|
parser.add_argument("--ip", type=str, default="127.0.0.1", help="IP address to bind to")
|
|
parser.add_argument("--port", type=int, default=7788, help="Port to listen on")
|
|
parser.add_argument("--theme", type=str, default="Ocean", choices=theme_map.keys(), help="Theme to use for the UI")
|
|
parser.add_argument("--dark-mode", action="store_true", help="Enable dark mode")
|
|
args = parser.parse_args()
|
|
|
|
demo = create_ui(theme_name=args.theme)
|
|
demo.launch(server_name=args.ip, server_port=args.port)
|
|
|
|
if __name__ == '__main__':
|
|
main()
|