mirror of
https://github.com/browser-use/browser-use.git
synced 2025-02-18 01:18:20 +03:00
1307 lines
43 KiB
Python
1307 lines
43 KiB
Python
from __future__ import annotations
|
|
|
|
import asyncio
|
|
import base64
|
|
import io
|
|
import json
|
|
import logging
|
|
import os
|
|
import platform
|
|
import re
|
|
import textwrap
|
|
import uuid
|
|
from io import BytesIO
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Dict, List, Optional, Type, TypeVar
|
|
|
|
from dotenv import load_dotenv
|
|
from google.api_core.exceptions import ResourceExhausted
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from lmnr import observe
|
|
from openai import RateLimitError
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
from pydantic import BaseModel, ValidationError
|
|
|
|
from browser_use.agent.message_manager.service import MessageManager
|
|
from browser_use.agent.prompts import AgentMessagePrompt, PlannerPrompt, SystemPrompt
|
|
from browser_use.agent.views import (
|
|
ActionResult,
|
|
AgentError,
|
|
AgentHistory,
|
|
AgentHistoryList,
|
|
AgentOutput,
|
|
AgentStepInfo,
|
|
)
|
|
from browser_use.browser.browser import Browser
|
|
from browser_use.browser.context import BrowserContext
|
|
from browser_use.browser.views import BrowserState, BrowserStateHistory
|
|
from browser_use.controller.registry.views import ActionModel
|
|
from browser_use.controller.service import Controller
|
|
from browser_use.dom.history_tree_processor.service import (
|
|
DOMHistoryElement,
|
|
HistoryTreeProcessor,
|
|
)
|
|
from browser_use.telemetry.service import ProductTelemetry
|
|
from browser_use.telemetry.views import (
|
|
AgentEndTelemetryEvent,
|
|
AgentRunTelemetryEvent,
|
|
AgentStepTelemetryEvent,
|
|
)
|
|
from browser_use.utils import time_execution_async
|
|
|
|
load_dotenv()
|
|
logger = logging.getLogger(__name__)
|
|
|
|
T = TypeVar('T', bound=BaseModel)
|
|
|
|
|
|
class Agent:
|
|
def __init__(
|
|
self,
|
|
task: str,
|
|
llm: BaseChatModel,
|
|
browser: Browser | None = None,
|
|
browser_context: BrowserContext | None = None,
|
|
controller: Controller = Controller(),
|
|
use_vision: bool = True,
|
|
use_vision_for_planner: bool = False,
|
|
save_conversation_path: Optional[str] = None,
|
|
save_conversation_path_encoding: Optional[str] = 'utf-8',
|
|
max_failures: int = 3,
|
|
retry_delay: int = 10,
|
|
system_prompt_class: Type[SystemPrompt] = SystemPrompt,
|
|
max_input_tokens: int = 128000,
|
|
validate_output: bool = False,
|
|
message_context: Optional[str] = None,
|
|
generate_gif: bool | str = True,
|
|
sensitive_data: Optional[Dict[str, str]] = None,
|
|
available_file_paths: Optional[list[str]] = None,
|
|
include_attributes: list[str] = [
|
|
'title',
|
|
'type',
|
|
'name',
|
|
'role',
|
|
'tabindex',
|
|
'aria-label',
|
|
'placeholder',
|
|
'value',
|
|
'alt',
|
|
'aria-expanded',
|
|
],
|
|
max_error_length: int = 400,
|
|
max_actions_per_step: int = 10,
|
|
tool_call_in_content: bool = True,
|
|
initial_actions: Optional[List[Dict[str, Dict[str, Any]]]] = None,
|
|
# Cloud Callbacks
|
|
register_new_step_callback: Callable[['BrowserState', 'AgentOutput', int], None] | None = None,
|
|
register_done_callback: Callable[['AgentHistoryList'], None] | None = None,
|
|
tool_calling_method: Optional[str] = 'auto',
|
|
page_extraction_llm: Optional[BaseChatModel] = None,
|
|
planner_llm: Optional[BaseChatModel] = None,
|
|
planner_interval: int = 1, # Run planner every N steps
|
|
):
|
|
self.agent_id = str(uuid.uuid4()) # unique identifier for the agent
|
|
self.sensitive_data = sensitive_data
|
|
if not page_extraction_llm:
|
|
self.page_extraction_llm = llm
|
|
else:
|
|
self.page_extraction_llm = page_extraction_llm
|
|
self.available_file_paths = available_file_paths
|
|
self.task = task
|
|
self.use_vision = use_vision
|
|
self.use_vision_for_planner = use_vision_for_planner
|
|
self.llm = llm
|
|
self.save_conversation_path = save_conversation_path
|
|
if self.save_conversation_path and '/' not in self.save_conversation_path:
|
|
self.save_conversation_path = f'{self.save_conversation_path}/'
|
|
self.save_conversation_path_encoding = save_conversation_path_encoding
|
|
self._last_result = None
|
|
self.include_attributes = include_attributes
|
|
self.max_error_length = max_error_length
|
|
self.generate_gif = generate_gif
|
|
|
|
# Initialize planner
|
|
self.planner_llm = planner_llm
|
|
self.planning_interval = planner_interval
|
|
self.last_plan = None
|
|
# Controller setup
|
|
self.controller = controller
|
|
self.max_actions_per_step = max_actions_per_step
|
|
|
|
# Browser setup
|
|
self.injected_browser = browser is not None
|
|
self.injected_browser_context = browser_context is not None
|
|
self.message_context = message_context
|
|
|
|
# Initialize browser first if needed
|
|
self.browser = browser if browser is not None else (None if browser_context else Browser())
|
|
|
|
# Initialize browser context
|
|
if browser_context:
|
|
self.browser_context = browser_context
|
|
elif self.browser:
|
|
self.browser_context = BrowserContext(browser=self.browser, config=self.browser.config.new_context_config)
|
|
else:
|
|
# If neither is provided, create both new
|
|
self.browser = Browser()
|
|
self.browser_context = BrowserContext(browser=self.browser)
|
|
|
|
self.system_prompt_class = system_prompt_class
|
|
|
|
# Telemetry setup
|
|
self.telemetry = ProductTelemetry()
|
|
|
|
# Action and output models setup
|
|
self._setup_action_models()
|
|
self._set_version_and_source()
|
|
self.max_input_tokens = max_input_tokens
|
|
|
|
self._set_model_names()
|
|
|
|
self.tool_calling_method = self.set_tool_calling_method(tool_calling_method)
|
|
|
|
self.message_manager = MessageManager(
|
|
llm=self.llm,
|
|
task=self.task,
|
|
action_descriptions=self.controller.registry.get_prompt_description(),
|
|
system_prompt_class=self.system_prompt_class,
|
|
max_input_tokens=self.max_input_tokens,
|
|
include_attributes=self.include_attributes,
|
|
max_error_length=self.max_error_length,
|
|
max_actions_per_step=self.max_actions_per_step,
|
|
message_context=self.message_context,
|
|
sensitive_data=self.sensitive_data,
|
|
)
|
|
if self.available_file_paths:
|
|
self.message_manager.add_file_paths(self.available_file_paths)
|
|
# Step callback
|
|
self.register_new_step_callback = register_new_step_callback
|
|
self.register_done_callback = register_done_callback
|
|
|
|
# Tracking variables
|
|
self.history: AgentHistoryList = AgentHistoryList(history=[])
|
|
self.n_steps = 1
|
|
self.consecutive_failures = 0
|
|
self.max_failures = max_failures
|
|
self.retry_delay = retry_delay
|
|
self.validate_output = validate_output
|
|
self.initial_actions = self._convert_initial_actions(initial_actions) if initial_actions else None
|
|
if save_conversation_path:
|
|
logger.info(f'Saving conversation to {save_conversation_path}')
|
|
|
|
self._paused = False
|
|
self._stopped = False
|
|
|
|
self.action_descriptions = self.controller.registry.get_prompt_description()
|
|
|
|
def _set_version_and_source(self) -> None:
|
|
try:
|
|
import pkg_resources
|
|
|
|
version = pkg_resources.get_distribution('browser-use').version
|
|
source = 'pip'
|
|
except Exception:
|
|
try:
|
|
import subprocess
|
|
|
|
version = subprocess.check_output(['git', 'describe', '--tags']).decode('utf-8').strip()
|
|
source = 'git'
|
|
except Exception:
|
|
version = 'unknown'
|
|
source = 'unknown'
|
|
logger.debug(f'Version: {version}, Source: {source}')
|
|
self.version = version
|
|
self.source = source
|
|
|
|
def _set_model_names(self) -> None:
|
|
self.chat_model_library = self.llm.__class__.__name__
|
|
self.model_name = "Unknown"
|
|
# Check for 'model_name' attribute first
|
|
if hasattr(self.llm, "model_name"):
|
|
model = self.llm.model_name
|
|
self.model_name = model if model is not None else "Unknown"
|
|
# Fallback to 'model' attribute if needed
|
|
elif hasattr(self.llm, "model"):
|
|
model = self.llm.model
|
|
self.model_name = model if model is not None else "Unknown"
|
|
|
|
if self.planner_llm:
|
|
if hasattr(self.planner_llm, 'model_name'):
|
|
self.planner_model_name = self.planner_llm.model_name # type: ignore
|
|
elif hasattr(self.planner_llm, 'model'):
|
|
self.planner_model_name = self.planner_llm.model # type: ignore
|
|
else:
|
|
self.planner_model_name = 'Unknown'
|
|
else:
|
|
self.planner_model_name = None
|
|
|
|
def _setup_action_models(self) -> None:
|
|
"""Setup dynamic action models from controller's registry"""
|
|
self.ActionModel = self.controller.registry.create_action_model()
|
|
# Create output model with the dynamic actions
|
|
self.AgentOutput = AgentOutput.type_with_custom_actions(self.ActionModel)
|
|
|
|
def set_tool_calling_method(self, tool_calling_method: Optional[str]) -> Optional[str]:
|
|
if tool_calling_method == 'auto':
|
|
if self.chat_model_library == 'ChatGoogleGenerativeAI':
|
|
return None
|
|
elif self.chat_model_library == 'ChatOpenAI':
|
|
return 'function_calling'
|
|
elif self.chat_model_library == 'AzureChatOpenAI':
|
|
return 'function_calling'
|
|
else:
|
|
return None
|
|
else:
|
|
return tool_calling_method
|
|
|
|
def add_new_task(self, new_task: str) -> None:
|
|
self.message_manager.add_new_task(new_task)
|
|
|
|
def _check_if_stopped_or_paused(self) -> bool:
|
|
if self._stopped or self._paused:
|
|
logger.debug('Agent paused after getting state')
|
|
raise InterruptedError
|
|
return False
|
|
|
|
@observe(name='agent.step', ignore_output=True, ignore_input=True)
|
|
@time_execution_async('--step')
|
|
async def step(self, step_info: Optional[AgentStepInfo] = None) -> None:
|
|
"""Execute one step of the task"""
|
|
logger.info(f'📍 Step {self.n_steps}')
|
|
state = None
|
|
model_output = None
|
|
result: list[ActionResult] = []
|
|
|
|
try:
|
|
state = await self.browser_context.get_state()
|
|
|
|
self._check_if_stopped_or_paused()
|
|
self.message_manager.add_state_message(state, self._last_result, step_info, self.use_vision)
|
|
|
|
# Run planner at specified intervals if planner is configured
|
|
if self.planner_llm and self.n_steps % self.planning_interval == 0:
|
|
plan = await self._run_planner()
|
|
# add plan before last state message
|
|
self.message_manager.add_plan(plan, position=-1)
|
|
|
|
input_messages = self.message_manager.get_messages()
|
|
|
|
self._check_if_stopped_or_paused()
|
|
|
|
try:
|
|
model_output = await self.get_next_action(input_messages)
|
|
|
|
if self.register_new_step_callback:
|
|
self.register_new_step_callback(state, model_output, self.n_steps)
|
|
|
|
self._save_conversation(input_messages, model_output)
|
|
self.message_manager._remove_last_state_message() # we dont want the whole state in the chat history
|
|
|
|
self._check_if_stopped_or_paused()
|
|
|
|
self.message_manager.add_model_output(model_output)
|
|
except Exception as e:
|
|
# model call failed, remove last state message from history
|
|
self.message_manager._remove_last_state_message()
|
|
raise e
|
|
|
|
result: list[ActionResult] = await self.controller.multi_act(
|
|
model_output.action,
|
|
self.browser_context,
|
|
page_extraction_llm=self.page_extraction_llm,
|
|
sensitive_data=self.sensitive_data,
|
|
check_break_if_paused=lambda: self._check_if_stopped_or_paused(),
|
|
available_file_paths=self.available_file_paths,
|
|
)
|
|
self._last_result = result
|
|
|
|
if len(result) > 0 and result[-1].is_done:
|
|
logger.info(f'📄 Result: {result[-1].extracted_content}')
|
|
|
|
self.consecutive_failures = 0
|
|
|
|
except InterruptedError:
|
|
logger.debug('Agent paused')
|
|
self._last_result = [
|
|
ActionResult(
|
|
error='The agent was paused - now continuing actions might need to be repeated', include_in_memory=True
|
|
)
|
|
]
|
|
return
|
|
except Exception as e:
|
|
result = await self._handle_step_error(e)
|
|
self._last_result = result
|
|
|
|
finally:
|
|
actions = [a.model_dump(exclude_unset=True) for a in model_output.action] if model_output else []
|
|
self.telemetry.capture(
|
|
AgentStepTelemetryEvent(
|
|
agent_id=self.agent_id,
|
|
step=self.n_steps,
|
|
actions=actions,
|
|
consecutive_failures=self.consecutive_failures,
|
|
step_error=[r.error for r in result if r.error] if result else ['No result'],
|
|
)
|
|
)
|
|
if not result:
|
|
return
|
|
|
|
if state:
|
|
self._make_history_item(model_output, state, result)
|
|
|
|
async def _handle_step_error(self, error: Exception) -> list[ActionResult]:
|
|
"""Handle all types of errors that can occur during a step"""
|
|
include_trace = logger.isEnabledFor(logging.DEBUG)
|
|
error_msg = AgentError.format_error(error, include_trace=include_trace)
|
|
prefix = f'❌ Result failed {self.consecutive_failures + 1}/{self.max_failures} times:\n '
|
|
|
|
if isinstance(error, (ValidationError, ValueError)):
|
|
logger.error(f'{prefix}{error_msg}')
|
|
if 'Max token limit reached' in error_msg:
|
|
# cut tokens from history
|
|
self.message_manager.max_input_tokens = self.max_input_tokens - 500
|
|
logger.info(f'Cutting tokens from history - new max input tokens: {self.message_manager.max_input_tokens}')
|
|
self.message_manager.cut_messages()
|
|
elif 'Could not parse response' in error_msg:
|
|
# give model a hint how output should look like
|
|
error_msg += '\n\nReturn a valid JSON object with the required fields.'
|
|
|
|
self.consecutive_failures += 1
|
|
elif isinstance(error, RateLimitError) or isinstance(error, ResourceExhausted):
|
|
logger.warning(f'{prefix}{error_msg}')
|
|
await asyncio.sleep(self.retry_delay)
|
|
self.consecutive_failures += 1
|
|
else:
|
|
logger.error(f'{prefix}{error_msg}')
|
|
self.consecutive_failures += 1
|
|
|
|
return [ActionResult(error=error_msg, include_in_memory=True)]
|
|
|
|
def _make_history_item(
|
|
self,
|
|
model_output: AgentOutput | None,
|
|
state: BrowserState,
|
|
result: list[ActionResult],
|
|
) -> None:
|
|
"""Create and store history item"""
|
|
interacted_element = None
|
|
len_result = len(result)
|
|
|
|
if model_output:
|
|
interacted_elements = AgentHistory.get_interacted_element(model_output, state.selector_map)
|
|
else:
|
|
interacted_elements = [None]
|
|
|
|
state_history = BrowserStateHistory(
|
|
url=state.url,
|
|
title=state.title,
|
|
tabs=state.tabs,
|
|
interacted_element=interacted_elements,
|
|
screenshot=state.screenshot,
|
|
)
|
|
|
|
history_item = AgentHistory(model_output=model_output, result=result, state=state_history)
|
|
|
|
self.history.history.append(history_item)
|
|
|
|
THINK_TAGS = re.compile(r'<think>.*?</think>', re.DOTALL)
|
|
|
|
def _remove_think_tags(self, text: str) -> str:
|
|
"""Remove think tags from text"""
|
|
return re.sub(self.THINK_TAGS, '', text)
|
|
|
|
def _convert_input_messages(self, input_messages: list[BaseMessage], model_name: Optional[str]) -> list[BaseMessage]:
|
|
"""Convert input messages to a format that is compatible with the planner model"""
|
|
if model_name is None:
|
|
return input_messages
|
|
if model_name == 'deepseek-reasoner' or model_name.startswith('deepseek-r1'):
|
|
converted_input_messages = self.message_manager.convert_messages_for_non_function_calling_models(input_messages)
|
|
merged_input_messages = self.message_manager.merge_successive_messages(converted_input_messages, HumanMessage)
|
|
merged_input_messages = self.message_manager.merge_successive_messages(merged_input_messages, AIMessage)
|
|
return merged_input_messages
|
|
return input_messages
|
|
|
|
@time_execution_async('--get_next_action')
|
|
async def get_next_action(self, input_messages: list[BaseMessage]) -> AgentOutput:
|
|
"""Get next action from LLM based on current state"""
|
|
converted_input_messages = self._convert_input_messages(input_messages, self.model_name)
|
|
|
|
if self.model_name == 'deepseek-reasoner' or self.model_name.startswith('deepseek-r1'):
|
|
output = self.llm.invoke(converted_input_messages)
|
|
output.content = self._remove_think_tags(output.content)
|
|
# TODO: currently invoke does not return reasoning_content, we should override invoke
|
|
try:
|
|
parsed_json = self.message_manager.extract_json_from_model_output(output.content)
|
|
parsed = self.AgentOutput(**parsed_json)
|
|
except (ValueError, ValidationError) as e:
|
|
logger.warning(f'Failed to parse model output: {output} {str(e)}')
|
|
raise ValueError('Could not parse response.')
|
|
elif self.tool_calling_method is None:
|
|
structured_llm = self.llm.with_structured_output(self.AgentOutput, include_raw=True)
|
|
response: dict[str, Any] = await structured_llm.ainvoke(input_messages) # type: ignore
|
|
parsed: AgentOutput | None = response['parsed']
|
|
else:
|
|
structured_llm = self.llm.with_structured_output(self.AgentOutput, include_raw=True, method=self.tool_calling_method)
|
|
response: dict[str, Any] = await structured_llm.ainvoke(input_messages) # type: ignore
|
|
parsed: AgentOutput | None = response['parsed']
|
|
|
|
if parsed is None:
|
|
raise ValueError('Could not parse response.')
|
|
|
|
# cut the number of actions to max_actions_per_step
|
|
parsed.action = parsed.action[: self.max_actions_per_step]
|
|
self._log_response(parsed)
|
|
self.n_steps += 1
|
|
|
|
return parsed
|
|
|
|
def _log_response(self, response: AgentOutput) -> None:
|
|
"""Log the model's response"""
|
|
if 'Success' in response.current_state.evaluation_previous_goal:
|
|
emoji = '👍'
|
|
elif 'Failed' in response.current_state.evaluation_previous_goal:
|
|
emoji = '⚠'
|
|
else:
|
|
emoji = '🤷'
|
|
logger.debug(f'🤖 {emoji} Page summary: {response.current_state.page_summary}')
|
|
logger.info(f'{emoji} Eval: {response.current_state.evaluation_previous_goal}')
|
|
logger.info(f'🧠 Memory: {response.current_state.memory}')
|
|
logger.info(f'🎯 Next goal: {response.current_state.next_goal}')
|
|
for i, action in enumerate(response.action):
|
|
logger.info(f'🛠️ Action {i + 1}/{len(response.action)}: {action.model_dump_json(exclude_unset=True)}')
|
|
|
|
def _save_conversation(self, input_messages: list[BaseMessage], response: Any) -> None:
|
|
"""Save conversation history to file if path is specified"""
|
|
if not self.save_conversation_path:
|
|
return
|
|
|
|
# create folders if not exists
|
|
os.makedirs(os.path.dirname(self.save_conversation_path), exist_ok=True)
|
|
|
|
with open(
|
|
self.save_conversation_path + f'_{self.n_steps}.txt',
|
|
'w',
|
|
encoding=self.save_conversation_path_encoding,
|
|
) as f:
|
|
self._write_messages_to_file(f, input_messages)
|
|
self._write_response_to_file(f, response)
|
|
|
|
def _write_messages_to_file(self, f: Any, messages: list[BaseMessage]) -> None:
|
|
"""Write messages to conversation file"""
|
|
for message in messages:
|
|
f.write(f' {message.__class__.__name__} \n')
|
|
|
|
if isinstance(message.content, list):
|
|
for item in message.content:
|
|
if isinstance(item, dict) and item.get('type') == 'text':
|
|
f.write(item['text'].strip() + '\n')
|
|
elif isinstance(message.content, str):
|
|
try:
|
|
content = json.loads(message.content)
|
|
f.write(json.dumps(content, indent=2) + '\n')
|
|
except json.JSONDecodeError:
|
|
f.write(message.content.strip() + '\n')
|
|
|
|
f.write('\n')
|
|
|
|
def _write_response_to_file(self, f: Any, response: Any) -> None:
|
|
"""Write model response to conversation file"""
|
|
f.write(' RESPONSE\n')
|
|
f.write(json.dumps(json.loads(response.model_dump_json(exclude_unset=True)), indent=2))
|
|
|
|
def _log_agent_run(self) -> None:
|
|
"""Log the agent run"""
|
|
logger.info(f'🚀 Starting task: {self.task}')
|
|
|
|
logger.debug(f'Version: {self.version}, Source: {self.source}')
|
|
self.telemetry.capture(
|
|
AgentRunTelemetryEvent(
|
|
agent_id=self.agent_id,
|
|
use_vision=self.use_vision,
|
|
task=self.task,
|
|
model_name=self.model_name,
|
|
chat_model_library=self.chat_model_library,
|
|
version=self.version,
|
|
source=self.source,
|
|
)
|
|
)
|
|
|
|
@observe(name='agent.run', ignore_output=True)
|
|
async def run(self, max_steps: int = 100) -> AgentHistoryList:
|
|
"""Execute the task with maximum number of steps"""
|
|
try:
|
|
self._log_agent_run()
|
|
|
|
# Execute initial actions if provided
|
|
if self.initial_actions:
|
|
result = await self.controller.multi_act(
|
|
self.initial_actions,
|
|
self.browser_context,
|
|
check_for_new_elements=False,
|
|
page_extraction_llm=self.page_extraction_llm,
|
|
check_break_if_paused=lambda: self._check_if_stopped_or_paused(),
|
|
available_file_paths=self.available_file_paths,
|
|
)
|
|
self._last_result = result
|
|
|
|
for step in range(max_steps):
|
|
if self._too_many_failures():
|
|
break
|
|
|
|
# Check control flags before each step
|
|
if not await self._handle_control_flags():
|
|
break
|
|
|
|
await self.step()
|
|
|
|
if self.history.is_done():
|
|
if self.validate_output and step < max_steps - 1:
|
|
if not await self._validate_output():
|
|
continue
|
|
|
|
logger.info('✅ Task completed successfully')
|
|
if self.register_done_callback:
|
|
self.register_done_callback(self.history)
|
|
break
|
|
else:
|
|
logger.info('❌ Failed to complete task in maximum steps')
|
|
|
|
return self.history
|
|
finally:
|
|
self.telemetry.capture(
|
|
AgentEndTelemetryEvent(
|
|
agent_id=self.agent_id,
|
|
success=self.history.is_done(),
|
|
steps=self.n_steps,
|
|
max_steps_reached=self.n_steps >= max_steps,
|
|
errors=self.history.errors(),
|
|
)
|
|
)
|
|
|
|
if not self.injected_browser_context:
|
|
await self.browser_context.close()
|
|
|
|
if not self.injected_browser and self.browser:
|
|
await self.browser.close()
|
|
|
|
if self.generate_gif:
|
|
output_path: str = 'agent_history.gif'
|
|
if isinstance(self.generate_gif, str):
|
|
output_path = self.generate_gif
|
|
|
|
self.create_history_gif(output_path=output_path)
|
|
|
|
def _too_many_failures(self) -> bool:
|
|
"""Check if we should stop due to too many failures"""
|
|
if self.consecutive_failures >= self.max_failures:
|
|
logger.error(f'❌ Stopping due to {self.max_failures} consecutive failures')
|
|
return True
|
|
return False
|
|
|
|
async def _handle_control_flags(self) -> bool:
|
|
"""Handle pause and stop flags. Returns True if execution should continue."""
|
|
if self._stopped:
|
|
logger.info('Agent stopped')
|
|
return False
|
|
|
|
while self._paused:
|
|
await asyncio.sleep(0.2) # Small delay to prevent CPU spinning
|
|
if self._stopped: # Allow stopping while paused
|
|
return False
|
|
return True
|
|
|
|
async def _validate_output(self) -> bool:
|
|
"""Validate the output of the last action is what the user wanted"""
|
|
system_msg = (
|
|
f'You are a validator of an agent who interacts with a browser. '
|
|
f'Validate if the output of last action is what the user wanted and if the task is completed. '
|
|
f'If the task is unclear defined, you can let it pass. But if something is missing or the image does not show what was requested dont let it pass. '
|
|
f'Try to understand the page and help the model with suggestions like scroll, do x, ... to get the solution right. '
|
|
f'Task to validate: {self.task}. Return a JSON object with 2 keys: is_valid and reason. '
|
|
f'is_valid is a boolean that indicates if the output is correct. '
|
|
f'reason is a string that explains why it is valid or not.'
|
|
f' example: {{"is_valid": false, "reason": "The user wanted to search for "cat photos", but the agent searched for "dog photos" instead."}}'
|
|
)
|
|
|
|
if self.browser_context.session:
|
|
state = await self.browser_context.get_state()
|
|
content = AgentMessagePrompt(
|
|
state=state,
|
|
result=self._last_result,
|
|
include_attributes=self.include_attributes,
|
|
max_error_length=self.max_error_length,
|
|
)
|
|
msg = [SystemMessage(content=system_msg), content.get_user_message(self.use_vision)]
|
|
else:
|
|
# if no browser session, we can't validate the output
|
|
return True
|
|
|
|
class ValidationResult(BaseModel):
|
|
"""
|
|
Validation results.
|
|
"""
|
|
is_valid: bool
|
|
reason: str
|
|
|
|
validator = self.llm.with_structured_output(ValidationResult, include_raw=True)
|
|
response: dict[str, Any] = await validator.ainvoke(msg) # type: ignore
|
|
parsed: ValidationResult = response['parsed']
|
|
is_valid = parsed.is_valid
|
|
if not is_valid:
|
|
logger.info(f'❌ Validator decision: {parsed.reason}')
|
|
msg = f'The output is not yet correct. {parsed.reason}.'
|
|
self._last_result = [ActionResult(extracted_content=msg, include_in_memory=True)]
|
|
else:
|
|
logger.info(f'✅ Validator decision: {parsed.reason}')
|
|
return is_valid
|
|
|
|
async def rerun_history(
|
|
self,
|
|
history: AgentHistoryList,
|
|
max_retries: int = 3,
|
|
skip_failures: bool = True,
|
|
delay_between_actions: float = 2.0,
|
|
) -> list[ActionResult]:
|
|
"""
|
|
Rerun a saved history of actions with error handling and retry logic.
|
|
|
|
Args:
|
|
history: The history to replay
|
|
max_retries: Maximum number of retries per action
|
|
skip_failures: Whether to skip failed actions or stop execution
|
|
delay_between_actions: Delay between actions in seconds
|
|
|
|
Returns:
|
|
List of action results
|
|
"""
|
|
# Execute initial actions if provided
|
|
if self.initial_actions:
|
|
await self.controller.multi_act(
|
|
self.initial_actions,
|
|
self.browser_context,
|
|
check_for_new_elements=False,
|
|
page_extraction_llm=self.page_extraction_llm,
|
|
check_break_if_paused=lambda: self._check_if_stopped_or_paused(),
|
|
available_file_paths=self.available_file_paths,
|
|
sensitive_data=self.sensitive_data,
|
|
)
|
|
|
|
results = []
|
|
|
|
for i, history_item in enumerate(history.history):
|
|
goal = history_item.model_output.current_state.next_goal if history_item.model_output else ''
|
|
logger.info(f'Replaying step {i + 1}/{len(history.history)}: goal: {goal}')
|
|
|
|
if (
|
|
not history_item.model_output
|
|
or not history_item.model_output.action
|
|
or history_item.model_output.action == [None]
|
|
):
|
|
logger.warning(f'Step {i + 1}: No action to replay, skipping')
|
|
results.append(ActionResult(error='No action to replay'))
|
|
continue
|
|
|
|
retry_count = 0
|
|
while retry_count < max_retries:
|
|
try:
|
|
result = await self._execute_history_step(history_item, delay_between_actions)
|
|
results.extend(result)
|
|
break
|
|
|
|
except Exception as e:
|
|
retry_count += 1
|
|
if retry_count == max_retries:
|
|
error_msg = f'Step {i + 1} failed after {max_retries} attempts: {str(e)}'
|
|
logger.error(error_msg)
|
|
if not skip_failures:
|
|
results.append(ActionResult(error=error_msg))
|
|
raise RuntimeError(error_msg)
|
|
else:
|
|
logger.warning(f'Step {i + 1} failed (attempt {retry_count}/{max_retries}), retrying...')
|
|
await asyncio.sleep(delay_between_actions)
|
|
|
|
return results
|
|
|
|
async def _execute_history_step(self, history_item: AgentHistory, delay: float) -> list[ActionResult]:
|
|
"""Execute a single step from history with element validation"""
|
|
state = await self.browser_context.get_state()
|
|
if not state or not history_item.model_output:
|
|
raise ValueError('Invalid state or model output')
|
|
updated_actions = []
|
|
for i, action in enumerate(history_item.model_output.action):
|
|
updated_action = await self._update_action_indices(
|
|
history_item.state.interacted_element[i],
|
|
action,
|
|
state,
|
|
)
|
|
updated_actions.append(updated_action)
|
|
|
|
if updated_action is None:
|
|
raise ValueError(f'Could not find matching element {i} in current page')
|
|
|
|
result = await self.controller.multi_act(
|
|
updated_actions,
|
|
self.browser_context,
|
|
page_extraction_llm=self.page_extraction_llm,
|
|
check_break_if_paused=lambda: self._check_if_stopped_or_paused(),
|
|
sensitive_data=self.sensitive_data,
|
|
)
|
|
|
|
await asyncio.sleep(delay)
|
|
return result
|
|
|
|
async def _update_action_indices(
|
|
self,
|
|
historical_element: Optional[DOMHistoryElement],
|
|
action: ActionModel, # Type this properly based on your action model
|
|
current_state: BrowserState,
|
|
) -> Optional[ActionModel]:
|
|
"""
|
|
Update action indices based on current page state.
|
|
Returns updated action or None if element cannot be found.
|
|
"""
|
|
if not historical_element or not current_state.element_tree:
|
|
return action
|
|
|
|
current_element = HistoryTreeProcessor.find_history_element_in_tree(historical_element, current_state.element_tree)
|
|
|
|
if not current_element or current_element.highlight_index is None:
|
|
return None
|
|
|
|
old_index = action.get_index()
|
|
if old_index != current_element.highlight_index:
|
|
action.set_index(current_element.highlight_index)
|
|
logger.info(f'Element moved in DOM, updated index from {old_index} to {current_element.highlight_index}')
|
|
|
|
return action
|
|
|
|
async def load_and_rerun(self, history_file: Optional[str | Path] = None, **kwargs) -> list[ActionResult]:
|
|
"""
|
|
Load history from file and rerun it.
|
|
|
|
Args:
|
|
history_file: Path to the history file
|
|
**kwargs: Additional arguments passed to rerun_history
|
|
"""
|
|
if not history_file:
|
|
history_file = 'AgentHistory.json'
|
|
history = AgentHistoryList.load_from_file(history_file, self.AgentOutput)
|
|
return await self.rerun_history(history, **kwargs)
|
|
|
|
def save_history(self, file_path: Optional[str | Path] = None) -> None:
|
|
"""Save the history to a file"""
|
|
if not file_path:
|
|
file_path = 'AgentHistory.json'
|
|
self.history.save_to_file(file_path)
|
|
|
|
def create_history_gif(
|
|
self,
|
|
output_path: str = 'agent_history.gif',
|
|
duration: int = 3000,
|
|
show_goals: bool = True,
|
|
show_task: bool = True,
|
|
show_logo: bool = False,
|
|
font_size: int = 40,
|
|
title_font_size: int = 56,
|
|
goal_font_size: int = 44,
|
|
margin: int = 40,
|
|
line_spacing: float = 1.5,
|
|
) -> None:
|
|
"""Create a GIF from the agent's history with overlaid task and goal text."""
|
|
if not self.history.history:
|
|
logger.warning('No history to create GIF from')
|
|
return
|
|
|
|
images = []
|
|
# if history is empty or first screenshot is None, we can't create a gif
|
|
if not self.history.history or not self.history.history[0].state.screenshot:
|
|
logger.warning('No history or first screenshot to create GIF from')
|
|
return
|
|
|
|
# Try to load fonts with multi-language support
|
|
try:
|
|
# Try different font options in order of preference
|
|
# System-specific fonts
|
|
if platform.system() == 'Windows':
|
|
font_options = [
|
|
'msyh.ttc', # Microsoft YaHei
|
|
'seguiemj.ttf', # Segoe UI Emoji
|
|
'segoe.ttf', # Segoe UI
|
|
]
|
|
elif platform.system() == 'Darwin': # macOS
|
|
font_options = [
|
|
'Hiragino Sans GB', # Primary font with full Unicode support (CJK + Latin)
|
|
'.AppleSystemUIFont', # System UI font as fallback
|
|
'Apple Color Emoji', # Emoji and special characters
|
|
]
|
|
else: # Linux and others
|
|
font_options = [
|
|
'/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',
|
|
]
|
|
|
|
# Add common fallback fonts
|
|
font_options.extend(['Arial Unicode MS', 'Helvetica', 'Arial', 'DejaVuSans', 'Verdana'])
|
|
|
|
font_loaded = False
|
|
for font_name in font_options:
|
|
try:
|
|
if platform.system() == 'Windows':
|
|
if not font_name.endswith(('.ttf', '.ttc')):
|
|
font_name = os.path.join(os.getenv('WIN_FONT_DIR', 'C:\\Windows\\Fonts'), font_name + '.ttf')
|
|
regular_font = ImageFont.truetype(font_name, font_size)
|
|
title_font = ImageFont.truetype(font_name, title_font_size)
|
|
goal_font = ImageFont.truetype(font_name, goal_font_size)
|
|
logger.debug(f'Loaded font: {font_name}')
|
|
font_loaded = True
|
|
break
|
|
except OSError:
|
|
continue
|
|
|
|
if not font_loaded:
|
|
raise OSError('No suitable fonts found')
|
|
|
|
except OSError:
|
|
logger.warning('Failed to load Unicode fonts, falling back to default')
|
|
regular_font = ImageFont.load_default()
|
|
title_font = ImageFont.load_default()
|
|
|
|
goal_font = regular_font
|
|
|
|
# Load logo if requested
|
|
logo = None
|
|
if show_logo:
|
|
try:
|
|
logo = Image.open('./static/browser-use.png')
|
|
# Resize logo to be small (e.g., 40px height)
|
|
logo_height = 150
|
|
aspect_ratio = logo.width / logo.height
|
|
logo_width = int(logo_height * aspect_ratio)
|
|
logo = logo.resize((logo_width, logo_height), Image.Resampling.LANCZOS)
|
|
except Exception as e:
|
|
logger.warning(f'Could not load logo: {e}')
|
|
|
|
# Create task frame if requested
|
|
if show_task and self.task:
|
|
task_frame = self._create_task_frame(
|
|
self.task,
|
|
self.history.history[0].state.screenshot,
|
|
title_font,
|
|
regular_font,
|
|
logo,
|
|
line_spacing,
|
|
)
|
|
images.append(task_frame)
|
|
|
|
# Process each history item
|
|
for i, item in enumerate(self.history.history, 1):
|
|
if not item.state.screenshot:
|
|
continue
|
|
|
|
# Convert base64 screenshot to PIL Image
|
|
img_data = base64.b64decode(item.state.screenshot)
|
|
image = Image.open(io.BytesIO(img_data))
|
|
|
|
if show_goals and item.model_output:
|
|
image = self._add_overlay_to_image(
|
|
image=image,
|
|
step_number=i,
|
|
goal_text=item.model_output.current_state.next_goal,
|
|
regular_font=regular_font,
|
|
title_font=title_font,
|
|
margin=margin,
|
|
logo=logo,
|
|
)
|
|
|
|
images.append(image)
|
|
|
|
if images:
|
|
# Save the GIF
|
|
images[0].save(
|
|
output_path,
|
|
save_all=True,
|
|
append_images=images[1:],
|
|
duration=duration,
|
|
loop=0,
|
|
optimize=False,
|
|
)
|
|
logger.info(f'Created GIF at {output_path}')
|
|
else:
|
|
logger.warning('No images found in history to create GIF')
|
|
|
|
def _create_task_frame(
|
|
self,
|
|
task: str,
|
|
first_screenshot: str,
|
|
title_font: ImageFont.FreeTypeFont,
|
|
regular_font: ImageFont.FreeTypeFont,
|
|
logo: Optional[Image.Image] = None,
|
|
line_spacing: float = 1.5,
|
|
) -> Image.Image:
|
|
"""Create initial frame showing the task."""
|
|
img_data = base64.b64decode(first_screenshot)
|
|
template = Image.open(io.BytesIO(img_data))
|
|
image = Image.new('RGB', template.size, (0, 0, 0))
|
|
draw = ImageDraw.Draw(image)
|
|
|
|
# Calculate vertical center of image
|
|
center_y = image.height // 2
|
|
|
|
# Draw task text with increased font size
|
|
margin = 140 # Increased margin
|
|
max_width = image.width - (2 * margin)
|
|
larger_font = ImageFont.truetype(regular_font.path, regular_font.size + 16) # Increase font size more
|
|
wrapped_text = self._wrap_text(task, larger_font, max_width)
|
|
|
|
# Calculate line height with spacing
|
|
line_height = larger_font.size * line_spacing
|
|
|
|
# Split text into lines and draw with custom spacing
|
|
lines = wrapped_text.split('\n')
|
|
total_height = line_height * len(lines)
|
|
|
|
# Start position for first line
|
|
text_y = center_y - (total_height / 2) + 50 # Shifted down slightly
|
|
|
|
for line in lines:
|
|
# Get line width for centering
|
|
line_bbox = draw.textbbox((0, 0), line, font=larger_font)
|
|
text_x = (image.width - (line_bbox[2] - line_bbox[0])) // 2
|
|
|
|
draw.text(
|
|
(text_x, text_y),
|
|
line,
|
|
font=larger_font,
|
|
fill=(255, 255, 255),
|
|
)
|
|
text_y += line_height
|
|
|
|
# Add logo if provided (top right corner)
|
|
if logo:
|
|
logo_margin = 20
|
|
logo_x = image.width - logo.width - logo_margin
|
|
image.paste(logo, (logo_x, logo_margin), logo if logo.mode == 'RGBA' else None)
|
|
|
|
return image
|
|
|
|
def _add_overlay_to_image(
|
|
self,
|
|
image: Image.Image,
|
|
step_number: int,
|
|
goal_text: str,
|
|
regular_font: ImageFont.FreeTypeFont,
|
|
title_font: ImageFont.FreeTypeFont,
|
|
margin: int,
|
|
logo: Optional[Image.Image] = None,
|
|
display_step: bool = True,
|
|
text_color: tuple[int, int, int, int] = (255, 255, 255, 255),
|
|
text_box_color: tuple[int, int, int, int] = (0, 0, 0, 255),
|
|
) -> Image.Image:
|
|
"""Add step number and goal overlay to an image."""
|
|
image = image.convert('RGBA')
|
|
txt_layer = Image.new('RGBA', image.size, (0, 0, 0, 0))
|
|
draw = ImageDraw.Draw(txt_layer)
|
|
if display_step:
|
|
# Add step number (bottom left)
|
|
step_text = str(step_number)
|
|
step_bbox = draw.textbbox((0, 0), step_text, font=title_font)
|
|
step_width = step_bbox[2] - step_bbox[0]
|
|
step_height = step_bbox[3] - step_bbox[1]
|
|
|
|
# Position step number in bottom left
|
|
x_step = margin + 10 # Slight additional offset from edge
|
|
y_step = image.height - margin - step_height - 10 # Slight offset from bottom
|
|
|
|
# Draw rounded rectangle background for step number
|
|
padding = 20 # Increased padding
|
|
step_bg_bbox = (
|
|
x_step - padding,
|
|
y_step - padding,
|
|
x_step + step_width + padding,
|
|
y_step + step_height + padding,
|
|
)
|
|
draw.rounded_rectangle(
|
|
step_bg_bbox,
|
|
radius=15, # Add rounded corners
|
|
fill=text_box_color,
|
|
)
|
|
|
|
# Draw step number
|
|
draw.text(
|
|
(x_step, y_step),
|
|
step_text,
|
|
font=title_font,
|
|
fill=text_color,
|
|
)
|
|
|
|
# Draw goal text (centered, bottom)
|
|
max_width = image.width - (4 * margin)
|
|
wrapped_goal = self._wrap_text(goal_text, title_font, max_width)
|
|
goal_bbox = draw.multiline_textbbox((0, 0), wrapped_goal, font=title_font)
|
|
goal_width = goal_bbox[2] - goal_bbox[0]
|
|
goal_height = goal_bbox[3] - goal_bbox[1]
|
|
|
|
# Center goal text horizontally, place above step number
|
|
x_goal = (image.width - goal_width) // 2
|
|
y_goal = y_step - goal_height - padding * 4 # More space between step and goal
|
|
|
|
# Draw rounded rectangle background for goal
|
|
padding_goal = 25 # Increased padding for goal
|
|
goal_bg_bbox = (
|
|
x_goal - padding_goal, # Remove extra space for logo
|
|
y_goal - padding_goal,
|
|
x_goal + goal_width + padding_goal,
|
|
y_goal + goal_height + padding_goal,
|
|
)
|
|
draw.rounded_rectangle(
|
|
goal_bg_bbox,
|
|
radius=15, # Add rounded corners
|
|
fill=text_box_color,
|
|
)
|
|
|
|
# Draw goal text
|
|
draw.multiline_text(
|
|
(x_goal, y_goal),
|
|
wrapped_goal,
|
|
font=title_font,
|
|
fill=text_color,
|
|
align='center',
|
|
)
|
|
|
|
# Add logo if provided (top right corner)
|
|
if logo:
|
|
logo_layer = Image.new('RGBA', image.size, (0, 0, 0, 0))
|
|
logo_margin = 20
|
|
logo_x = image.width - logo.width - logo_margin
|
|
logo_layer.paste(logo, (logo_x, logo_margin), logo if logo.mode == 'RGBA' else None)
|
|
txt_layer = Image.alpha_composite(logo_layer, txt_layer)
|
|
|
|
# Composite and convert
|
|
result = Image.alpha_composite(image, txt_layer)
|
|
return result.convert('RGB')
|
|
|
|
def _wrap_text(self, text: str, font: ImageFont.FreeTypeFont, max_width: int) -> str:
|
|
"""
|
|
Wrap text to fit within a given width.
|
|
|
|
Args:
|
|
text: Text to wrap
|
|
font: Font to use for text
|
|
max_width: Maximum width in pixels
|
|
|
|
Returns:
|
|
Wrapped text with newlines
|
|
"""
|
|
words = text.split()
|
|
lines = []
|
|
current_line = []
|
|
|
|
for word in words:
|
|
current_line.append(word)
|
|
line = ' '.join(current_line)
|
|
bbox = font.getbbox(line)
|
|
if bbox[2] > max_width:
|
|
if len(current_line) == 1:
|
|
lines.append(current_line.pop())
|
|
else:
|
|
current_line.pop()
|
|
lines.append(' '.join(current_line))
|
|
current_line = [word]
|
|
|
|
if current_line:
|
|
lines.append(' '.join(current_line))
|
|
|
|
return '\n'.join(lines)
|
|
|
|
def _create_frame(self, screenshot: str, text: str, step_number: int, width: int = 1200, height: int = 800) -> Image.Image:
|
|
"""Create a frame for the GIF with improved styling"""
|
|
|
|
# Create base image
|
|
frame = Image.new('RGB', (width, height), 'white')
|
|
|
|
# Load and resize screenshot
|
|
screenshot_img = Image.open(BytesIO(base64.b64decode(screenshot)))
|
|
screenshot_img.thumbnail((width - 40, height - 160)) # Leave space for text
|
|
|
|
# Calculate positions
|
|
screenshot_x = (width - screenshot_img.width) // 2
|
|
screenshot_y = 120 # Leave space for header
|
|
|
|
# Draw screenshot
|
|
frame.paste(screenshot_img, (screenshot_x, screenshot_y))
|
|
|
|
# Load browser-use logo
|
|
logo_size = 100 # Increased size for browser-use logo
|
|
logo_path = os.path.join(os.path.dirname(__file__), 'assets/browser-use-logo.png')
|
|
if os.path.exists(logo_path):
|
|
logo = Image.open(logo_path)
|
|
logo.thumbnail((logo_size, logo_size))
|
|
frame.paste(logo, (width - logo_size - 20, 20), logo if 'A' in logo.getbands() else None)
|
|
|
|
# Create drawing context
|
|
draw = ImageDraw.Draw(frame)
|
|
|
|
# Load fonts
|
|
try:
|
|
title_font = ImageFont.truetype('Arial.ttf', 36) # Increased font size
|
|
text_font = ImageFont.truetype('Arial.ttf', 24) # Increased font size
|
|
number_font = ImageFont.truetype('Arial.ttf', 48) # Increased font size for step number
|
|
except:
|
|
title_font = ImageFont.load_default()
|
|
text_font = ImageFont.load_default()
|
|
number_font = ImageFont.load_default()
|
|
|
|
# Draw task text with increased spacing
|
|
margin = 80 # Increased margin
|
|
max_text_width = width - (2 * margin)
|
|
|
|
# Create rounded rectangle for goal text
|
|
text_padding = 20
|
|
text_lines = textwrap.wrap(text, width=60)
|
|
text_height = sum(draw.textsize(line, font=text_font)[1] for line in text_lines)
|
|
text_box_height = text_height + (2 * text_padding)
|
|
|
|
# Draw rounded rectangle background for goal
|
|
goal_bg_coords = [
|
|
margin - text_padding,
|
|
40, # Top position
|
|
width - margin + text_padding,
|
|
40 + text_box_height,
|
|
]
|
|
draw.rounded_rectangle(
|
|
goal_bg_coords,
|
|
radius=15, # Increased radius for more rounded corners
|
|
fill='#f0f0f0',
|
|
)
|
|
|
|
# Draw browser-use small logo in top left of goal box
|
|
small_logo_size = 30
|
|
if os.path.exists(logo_path):
|
|
small_logo = Image.open(logo_path)
|
|
small_logo.thumbnail((small_logo_size, small_logo_size))
|
|
frame.paste(
|
|
small_logo,
|
|
(margin - text_padding + 10, 45), # Positioned inside goal box
|
|
small_logo if 'A' in small_logo.getbands() else None,
|
|
)
|
|
|
|
# Draw text with proper wrapping
|
|
y = 50 # Starting y position for text
|
|
for line in text_lines:
|
|
draw.text((margin + small_logo_size + 20, y), line, font=text_font, fill='black')
|
|
y += draw.textsize(line, font=text_font)[1] + 5
|
|
|
|
# Draw step number with rounded background
|
|
number_text = str(step_number)
|
|
number_size = draw.textsize(number_text, font=number_font)
|
|
number_padding = 20
|
|
number_box_width = number_size[0] + (2 * number_padding)
|
|
number_box_height = number_size[1] + (2 * number_padding)
|
|
|
|
# Draw rounded rectangle for step number
|
|
number_bg_coords = [
|
|
20, # Left position
|
|
height - number_box_height - 20, # Bottom position
|
|
20 + number_box_width,
|
|
height - 20,
|
|
]
|
|
draw.rounded_rectangle(
|
|
number_bg_coords,
|
|
radius=15,
|
|
fill='#007AFF', # Blue background
|
|
)
|
|
|
|
# Center number in its background
|
|
number_x = number_bg_coords[0] + ((number_box_width - number_size[0]) // 2)
|
|
number_y = number_bg_coords[1] + ((number_box_height - number_size[1]) // 2)
|
|
draw.text((number_x, number_y), number_text, font=number_font, fill='white')
|
|
|
|
return frame
|
|
|
|
def pause(self) -> None:
|
|
"""Pause the agent before the next step"""
|
|
logger.info('🔄 pausing Agent ')
|
|
self._paused = True
|
|
|
|
def resume(self) -> None:
|
|
"""Resume the agent"""
|
|
logger.info('▶️ Agent resuming')
|
|
self._paused = False
|
|
|
|
def stop(self) -> None:
|
|
"""Stop the agent"""
|
|
logger.info('⏹️ Agent stopping')
|
|
self._stopped = True
|
|
|
|
def _convert_initial_actions(self, actions: List[Dict[str, Dict[str, Any]]]) -> List[ActionModel]:
|
|
"""Convert dictionary-based actions to ActionModel instances"""
|
|
converted_actions = []
|
|
action_model = self.ActionModel
|
|
for action_dict in actions:
|
|
# Each action_dict should have a single key-value pair
|
|
action_name = next(iter(action_dict))
|
|
params = action_dict[action_name]
|
|
|
|
# Get the parameter model for this action from registry
|
|
action_info = self.controller.registry.registry.actions[action_name]
|
|
param_model = action_info.param_model
|
|
|
|
# Create validated parameters using the appropriate param model
|
|
validated_params = param_model(**params)
|
|
|
|
# Create ActionModel instance with the validated parameters
|
|
action_model = self.ActionModel(**{action_name: validated_params})
|
|
converted_actions.append(action_model)
|
|
|
|
return converted_actions
|
|
|
|
async def _run_planner(self) -> Optional[str]:
|
|
"""Run the planner to analyze state and suggest next steps"""
|
|
# Skip planning if no planner_llm is set
|
|
if not self.planner_llm:
|
|
return None
|
|
|
|
# Create planner message history using full message history
|
|
planner_messages = [
|
|
PlannerPrompt(self.action_descriptions).get_system_message(),
|
|
*self.message_manager.get_messages()[1:], # Use full message history except the first
|
|
]
|
|
|
|
if not self.use_vision_for_planner and self.use_vision:
|
|
last_state_message = planner_messages[-1]
|
|
# remove image from last state message
|
|
new_msg = ''
|
|
if isinstance(last_state_message.content, list):
|
|
for msg in last_state_message.content:
|
|
if msg['type'] == 'text':
|
|
new_msg += msg['text']
|
|
elif msg['type'] == 'image_url':
|
|
continue
|
|
else:
|
|
new_msg = last_state_message.content
|
|
|
|
planner_messages[-1] = HumanMessage(content=new_msg)
|
|
|
|
planner_messages = self._convert_input_messages(planner_messages, self.planner_model_name)
|
|
# Get planner output
|
|
response = await self.planner_llm.ainvoke(planner_messages)
|
|
plan = response.content
|
|
# if deepseek-reasoner, remove think tags
|
|
if self.planner_model_name == 'deepseek-reasoner':
|
|
plan = self._remove_think_tags(plan)
|
|
try:
|
|
plan_json = json.loads(plan)
|
|
logger.info(f'Planning Analysis:\n{json.dumps(plan_json, indent=4)}')
|
|
except json.JSONDecodeError:
|
|
logger.info(f'Planning Analysis:\n{plan}')
|
|
except Exception as e:
|
|
logger.debug(f'Error parsing planning analysis: {e}')
|
|
logger.info(f'Plan: {plan}')
|
|
|
|
return plan
|