Files
claude-cookbooks/skills/retrieval_augmented_generation/data/retrieval_results.json
2025-09-16 16:35:49 -06:00

76831 lines
2.6 MiB

{
"evalId": "eval-2024-07-08T18:39:48",
"results": {
"version": 2,
"timestamp": "2024-07-08T18:39:48.303Z",
"results": [
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases",
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 96901,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?",
"label": "{{ query }}"
},
"vars": {
"query": "What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1011,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?",
"label": "{{ query }}"
},
"vars": {
"query": "What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 957,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 975,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?",
"label": "{{ query }}"
},
"vars": {
"query": "What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/prompt-validation#examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/prompt-validation#examples",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1007,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?",
"label": "{{ query }}"
},
"vars": {
"query": "What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/prompt-validation#examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/prompt-validation#examples",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?",
"label": "{{ query }}"
},
"vars": {
"query": "What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/prompt-validation#examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/prompt-validation#examples",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?",
"label": "{{ query }}"
},
"vars": {
"query": "How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 997,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?",
"label": "{{ query }}"
},
"vars": {
"query": "How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?",
"label": "{{ query }}"
},
"vars": {
"query": "How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?",
"label": "{{ query }}"
},
"vars": {
"query": "When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/api#june-27th-2024",
"https://docs.claude.com/en/release-notes/api#may-30th-2024",
"https://docs.claude.com/en/api/rate-limits#about-our-limits"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1030,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?",
"label": "{{ query }}"
},
"vars": {
"query": "When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/api#june-27th-2024",
"https://docs.claude.com/en/release-notes/api#may-30th-2024",
"https://docs.claude.com/en/api/rate-limits#about-our-limits"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?",
"label": "{{ query }}"
},
"vars": {
"query": "When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/api#june-27th-2024",
"https://docs.claude.com/en/release-notes/api#may-30th-2024",
"https://docs.claude.com/en/api/rate-limits#about-our-limits"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?",
"label": "{{ query }}"
},
"vars": {
"query": "When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 992,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?",
"label": "{{ query }}"
},
"vars": {
"query": "When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?",
"label": "{{ query }}"
},
"vars": {
"query": "When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results",
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 106010,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can I use Claude to more easily digest the content of long PDF documents?",
"label": "{{ query }}"
},
"vars": {
"query": "How can I use Claude to more easily digest the content of long PDF documents?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/docs/build-with-claude/vision#before-you-upload\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1226,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can I use Claude to more easily digest the content of long PDF documents?",
"label": "{{ query }}"
},
"vars": {
"query": "How can I use Claude to more easily digest the content of long PDF documents?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/docs/build-with-claude/vision#before-you-upload\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can I use Claude to more easily digest the content of long PDF documents?",
"label": "{{ query }}"
},
"vars": {
"query": "How can I use Claude to more easily digest the content of long PDF documents?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/docs/build-with-claude/vision#before-you-upload\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook",
"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 928,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases",
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#accessing-the-evaluate-feature",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 107527,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "According to the documentation, where can you view your organization's current API rate limits in the Claude Console?",
"label": "{{ query }}"
},
"vars": {
"query": "According to the documentation, where can you view your organization's current API rate limits in the Claude Console?",
"correct_chunks": "[\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/rate-limits#about-our-limits",
"https://docs.claude.com/en/api/rate-limits#response-headers",
"https://docs.claude.com/en/release-notes/api#june-27th-2024"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1543,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "According to the documentation, where can you view your organization's current API rate limits in the Claude Console?",
"label": "{{ query }}"
},
"vars": {
"query": "According to the documentation, where can you view your organization's current API rate limits in the Claude Console?",
"correct_chunks": "[\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/rate-limits#response-headers",
"https://docs.claude.com/en/api/rate-limits#about-our-limits",
"https://docs.claude.com/en/release-notes/api#june-27th-2024"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1520,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?",
"label": "{{ query }}"
},
"vars": {
"query": "How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#deploy-your-classifier"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1105,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?",
"label": "{{ query }}"
},
"vars": {
"query": "How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1227,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?",
"label": "{{ query }}"
},
"vars": {
"query": "How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 0,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "According to the documentation, where can you view your organization's current API rate limits in the Claude Console?",
"label": "{{ query }}"
},
"vars": {
"query": "According to the documentation, where can you view your organization's current API rate limits in the Claude Console?",
"correct_chunks": "[\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/api#june-27th-2024",
"https://docs.claude.com/en/api/rate-limits#about-our-limits",
"https://docs.claude.com/en/api/rate-limits#rate-limits"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 2784,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?",
"label": "{{ query }}"
},
"vars": {
"query": "What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 110531,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you specify a system prompt using the Text Completions API versus the Messages API?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you specify a system prompt using the Text Completions API versus the Messages API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/prompt-validation#examples\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1816,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1235,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you specify a system prompt using the Text Completions API versus the Messages API?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you specify a system prompt using the Text Completions API versus the Messages API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/prompt-validation#examples\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1828,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?",
"label": "{{ query }}"
},
"vars": {
"query": "When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#example-data\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1304,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?",
"label": "{{ query }}"
},
"vars": {
"query": "When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#example-data\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1287,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you specify a system prompt using the Text Completions API versus the Messages API?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you specify a system prompt using the Text Completions API versus the Messages API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/prompt-validation#examples\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3415,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?",
"label": "{{ query }}"
},
"vars": {
"query": "Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#next-steps\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/intro-to-claude#implementing-claude",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer",
"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1196,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?",
"label": "{{ query }}"
},
"vars": {
"query": "Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#next-steps\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow",
"https://docs.claude.com/en/docs/build-with-claude/vision#prompt-examples",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1234,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How does the Messages API handle mid-response prompting compared to the Text Completions API?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the Messages API handle mid-response prompting compared to the Text Completions API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1181,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How does the Messages API handle mid-response prompting compared to the Text Completions API?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the Messages API handle mid-response prompting compared to the Text Completions API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1196,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How does the Messages API handle mid-response prompting compared to the Text Completions API?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the Messages API handle mid-response prompting compared to the Text Completions API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?",
"label": "{{ query }}"
},
"vars": {
"query": "When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#example-data\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 4007,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?",
"label": "{{ query }}"
},
"vars": {
"query": "How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1442,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?",
"label": "{{ query }}"
},
"vars": {
"query": "Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#next-steps\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#iterating-your-prompt-for-better-performance"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3360,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?",
"label": "{{ query }}"
},
"vars": {
"query": "How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1452,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/define-success#common-success-criteria-to-consider",
"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1256,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?",
"label": "{{ query }}"
},
"vars": {
"query": "What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1011,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?",
"label": "{{ query }}"
},
"vars": {
"query": "What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?",
"label": "{{ query }}"
},
"vars": {
"query": "What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?",
"label": "{{ query }}"
},
"vars": {
"query": "How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#how-to-give-claude-a-role",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 3789,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading",
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#when-to-use-claude-for-classification"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1237,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#when-to-use-claude-for-classification",
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals",
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1277,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#when-to-use-claude-for-classification",
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals",
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you access and deploy Voyage embeddings on AWS Marketplace?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you access and deploy Voyage embeddings on AWS Marketplace?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#getting-started-with-voyage-ai",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#pricing"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1145,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you access and deploy Voyage embeddings on AWS Marketplace?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you access and deploy Voyage embeddings on AWS Marketplace?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#getting-started-with-voyage-ai",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#pricing"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1087,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you access and deploy Voyage embeddings on AWS Marketplace?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you access and deploy Voyage embeddings on AWS Marketplace?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#getting-started-with-voyage-ai",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#pricing"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/define-success#common-success-criteria-to-consider",
"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 5842,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?",
"label": "{{ query }}"
},
"vars": {
"query": "When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#next-steps",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1468,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?",
"label": "{{ query }}"
},
"vars": {
"query": "When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#next-steps"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1596,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-models\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/models#legacy-models",
"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification"
]
},
"success": true,
"score": 0.6666666666666666,
"namedScores": {},
"latencyMs": 1431,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics",
"https://docs.claude.com/en/docs/build-with-claude/define-success#common-success-criteria-to-consider"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 8264,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-models\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/models#legacy-models",
"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison",
"https://docs.claude.com/en/docs/about-claude/models#model-comparison"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 1263,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-models\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/models#legacy-models",
"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison",
"https://docs.claude.com/en/docs/about-claude/models#model-comparison"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What is one key benefit of using examples when prompt engineering with Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "What is one key benefit of using examples when prompt engineering with Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1185,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?",
"label": "{{ query }}"
},
"vars": {
"query": "When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3757,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?",
"label": "{{ query }}"
},
"vars": {
"query": "According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1107,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?",
"label": "{{ query }}"
},
"vars": {
"query": "According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1083,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?",
"label": "{{ query }}"
},
"vars": {
"query": "According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What is one key benefit of using examples when prompt engineering with Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "What is one key benefit of using examples when prompt engineering with Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#crafting-effective-examples"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 3331,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can I quickly get started using the Claude for Sheets extension with a pre-made template?",
"label": "{{ query }}"
},
"vars": {
"query": "How can I quickly get started using the Claude for Sheets extension with a pre-made template?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-usage-examples"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1310,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can I quickly get started using the Claude for Sheets extension with a pre-made template?",
"label": "{{ query }}"
},
"vars": {
"query": "How can I quickly get started using the Claude for Sheets extension with a pre-made template?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-usage-examples",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1334,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#delta-types",
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#event-types"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1252,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#delta-types",
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#event-types"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1264,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#delta-types",
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#event-types"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What is one key benefit of using examples when prompt engineering with Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "What is one key benefit of using examples when prompt engineering with Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 5750,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you include an image as part of a Claude API request, and what image formats are currently supported?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you include an image as part of a Claude API request, and what image formats are currently supported?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/vision#ensuring-image-quality",
"https://docs.claude.com/en/docs/build-with-claude/vision#faq",
"https://docs.claude.com/en/docs/build-with-claude/vision#evaluate-image-size"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1472,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you include an image as part of a Claude API request, and what image formats are currently supported?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you include an image as part of a Claude API request, and what image formats are currently supported?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/vision#ensuring-image-quality",
"https://docs.claude.com/en/docs/build-with-claude/vision#faq",
"https://docs.claude.com/en/api/messages-examples#vision"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1595,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can I quickly get started using the Claude for Sheets extension with a pre-made template?",
"label": "{{ query }}"
},
"vars": {
"query": "How can I quickly get started using the Claude for Sheets extension with a pre-made template?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 3557,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?",
"label": "{{ query }}"
},
"vars": {
"query": "What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\",\"https://docs.claude.com/en/docs/resources/glossary#latency\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency",
"https://docs.claude.com/en/docs/resources/glossary#latency"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 1394,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?",
"label": "{{ query }}"
},
"vars": {
"query": "What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\",\"https://docs.claude.com/en/docs/resources/glossary#latency\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency",
"https://docs.claude.com/en/docs/resources/glossary#latency"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 1445,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you include an image as part of a Claude API request, and what image formats are currently supported?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you include an image as part of a Claude API request, and what image formats are currently supported?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-examples#vision",
"https://docs.claude.com/en/docs/build-with-claude/vision#faq",
"https://docs.claude.com/en/docs/build-with-claude/vision#how-to-use-vision"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3095,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?",
"label": "{{ query }}"
},
"vars": {
"query": "How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1397,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?",
"label": "{{ query }}"
},
"vars": {
"query": "How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1399,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?",
"label": "{{ query }}"
},
"vars": {
"query": "What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\",\"https://docs.claude.com/en/docs/resources/glossary#latency\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token",
"https://docs.claude.com/en/docs/resources/glossary#latency",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 3244,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#tool-use-and-json-mode\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#next-steps"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1468,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#tool-use-and-json-mode\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#next-steps",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1507,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?",
"label": "{{ query }}"
},
"vars": {
"query": "According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/errors#http-errors\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/errors#http-errors",
"https://docs.claude.com/en/api/messages-streaming#error-events",
"https://docs.claude.com/en/api/streaming#error-event-types"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 1216,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?",
"label": "{{ query }}"
},
"vars": {
"query": "According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/errors#http-errors\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/errors#http-errors",
"https://docs.claude.com/en/api/messages-streaming#error-events",
"https://docs.claude.com/en/api/streaming#error-event-types"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 1217,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?",
"label": "{{ query }}"
},
"vars": {
"query": "According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/errors#http-errors\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/errors#http-errors",
"https://docs.claude.com/en/api/messages-streaming#error-events",
"https://docs.claude.com/en/api/streaming#error-event-types"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?",
"label": "{{ query }}"
},
"vars": {
"query": "How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 4102,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#tool-use-and-json-mode\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#forcing-tool-use"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3300,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#delta-types",
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#input-json-delta"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1406,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?",
"label": "{{ query }}"
},
"vars": {
"query": "On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/api#may-30th-2024\"]"
},
"error": "Error: Error running Python script: _pickle.UnpicklingError: pickle data was truncated\nStack Trace: Error: _pickle.UnpicklingError: pickle data was truncated\n at PythonShell.parseError (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:303:21)\n at terminateIfNeeded (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:193:32)\n at ChildProcess.<anonymous> (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:185:13)\n at ChildProcess.emit (node:events:519:28)\n at ChildProcess._handle.onexit (node:internal/child_process:294:12)\n --Python Traceback: --\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 34, in <module>\n result = call_method(script_path, method_name, *data)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 18, in call_method\n spec.loader.exec_module(script_module)\n File \"<frozen importlib._bootstrap_external>\", line 940, in exec_module\n File \"<frozen importlib._bootstrap>\", line 241, in _call_with_frames_removed\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/provider_retrieval.py\", line 114, in <module>\n db_rerank.load_data(anthropic_docs_summaries)\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 108, in load_data\n self.load_db()\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 169, in load_db\n data = pickle.load(file)\n ^^^^^^^^^^^^^^^^^\n\nError: Error running Python script: _pickle.UnpicklingError: pickle data was truncated\nStack Trace: Error: _pickle.UnpicklingError: pickle data was truncated\n at PythonShell.parseError (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:303:21)\n at terminateIfNeeded (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:193:32)\n at ChildProcess.<anonymous> (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:185:13)\n at ChildProcess.emit (node:events:519:28)\n at ChildProcess._handle.onexit (node:internal/child_process:294:12)\n --Python Traceback: --\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 34, in <module>\n result = call_method(script_path, method_name, *data)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 18, in call_method\n spec.loader.exec_module(script_module)\n File \"<frozen importlib._bootstrap_external>\", line 940, in exec_module\n File \"<frozen importlib._bootstrap>\", line 241, in _call_with_frames_removed\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/provider_retrieval.py\", line 114, in <module>\n db_rerank.load_data(anthropic_docs_summaries)\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 108, in load_data\n self.load_db()\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 169, in load_db\n data = pickle.load(file)\n ^^^^^^^^^^^^^^^^^\n at runPython (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.js:50:15)\n at process.processTicksAndRejections (node:internal/process/task_queues:95:5)\n at async PythonProvider.executePythonScript (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/providers/pythonCompletion.js:52:31)\n at async Evaluator.runEval (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/evaluator.js:297:28)\n at async processEvalStep (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/evaluator.js:619:25)",
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 0
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#delta-types",
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#input-json-delta"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1881,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?",
"label": "{{ query }}"
},
"vars": {
"query": "On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/api#may-30th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/api#june-20th-2024",
"https://docs.claude.com/en/release-notes/api#may-30th-2024",
"https://docs.claude.com/en/docs/intro-to-claude#claude-3-5-family"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1483,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?",
"label": "{{ query }}"
},
"vars": {
"query": "In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024",
"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024",
"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1169,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?",
"label": "{{ query }}"
},
"vars": {
"query": "In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024",
"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024",
"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 14,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?",
"label": "{{ query }}"
},
"vars": {
"query": "In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024",
"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024",
"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1252,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?",
"label": "{{ query }}"
},
"vars": {
"query": "When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#forcing-tool-use",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 925,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?",
"label": "{{ query }}"
},
"vars": {
"query": "When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#forcing-tool-use",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 2,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?",
"label": "{{ query }}"
},
"vars": {
"query": "On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/api#may-30th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/api#june-20th-2024",
"https://docs.claude.com/en/release-notes/api#may-30th-2024",
"https://docs.claude.com/en/docs/about-claude/models#model-names"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 2978,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?",
"label": "{{ query }}"
},
"vars": {
"query": "When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#forcing-tool-use",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1459,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?",
"label": "{{ query }}"
},
"vars": {
"query": "What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#example-evals\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/client-sdks#python",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package",
"https://docs.claude.com/en/api/prompt-validation#examples"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1183,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?",
"label": "{{ query }}"
},
"vars": {
"query": "What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#example-evals\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/client-sdks#python",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package",
"https://docs.claude.com/en/api/prompt-validation#examples"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 0,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?",
"label": "{{ query }}"
},
"vars": {
"query": "What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#example-evals\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/client-sdks#python",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package",
"https://docs.claude.com/en/api/prompt-validation#examples"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1431,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-an-sdk-for-accessing-bedrock\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests",
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-an-sdk-for-accessing-bedrock",
"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1543,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-an-sdk-for-accessing-bedrock\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests",
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#subscribe-to-anthropic-models",
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#accessing-bedrock"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1577,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#input-json-delta",
"https://docs.claude.com/en/api/messages-streaming#delta-types"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 8176,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?",
"label": "{{ query }}"
},
"vars": {
"query": "When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 1337,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?",
"label": "{{ query }}"
},
"vars": {
"query": "When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 1365,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?",
"label": "{{ query }}"
},
"vars": {
"query": "How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/intro-to-claude#model-options"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1379,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?",
"label": "{{ query }}"
},
"vars": {
"query": "How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model",
"https://docs.claude.com/en/docs/intro-to-claude#model-options",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-reduce-latency"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1372,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?",
"label": "{{ query }}"
},
"vars": {
"query": "How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model",
"https://docs.claude.com/en/docs/intro-to-claude#model-options",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-reduce-latency"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?",
"label": "{{ query }}"
},
"vars": {
"query": "When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 2928,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you stream responses from the Claude API using the Python SDK?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you stream responses from the Claude API using the Python SDK?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks",
"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request",
"https://docs.claude.com/en/api/#authentication"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1297,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you stream responses from the Claude API using the Python SDK?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you stream responses from the Claude API using the Python SDK?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks",
"https://docs.claude.com/en/docs/quickstart#prerequisites",
"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1396,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response",
"https://docs.claude.com/en/docs/welcome#get-started",
"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1193,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response",
"https://docs.claude.com/en/docs/welcome#get-started",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1265,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response",
"https://docs.claude.com/en/docs/welcome#get-started",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?",
"label": "{{ query }}"
},
"vars": {
"query": "What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles",
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals",
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1322,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?",
"label": "{{ query }}"
},
"vars": {
"query": "What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles",
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals",
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1280,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?",
"label": "{{ query }}"
},
"vars": {
"query": "What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles",
"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals",
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-an-sdk-for-accessing-bedrock\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests",
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-an-sdk-for-accessing-bedrock",
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#api-model-names"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 8341,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you stream responses from the Claude API using the Python SDK?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you stream responses from the Claude API using the Python SDK?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks",
"https://docs.claude.com/en/api/client-sdks#python",
"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 3824,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the two required fields in a content_block_delta event for a text delta type?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two required fields in a content_block_delta event for a text delta type?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#delta-types",
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#input-json-delta"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1478,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the two required fields in a content_block_delta event for a text delta type?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two required fields in a content_block_delta event for a text delta type?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#delta-types",
"https://docs.claude.com/en/api/messages-streaming#input-json-delta"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1507,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/quickstart#next-steps\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources",
"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1487,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the two required fields in a content_block_delta event for a text delta type?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two required fields in a content_block_delta event for a text delta type?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#delta-types",
"https://docs.claude.com/en/api/messages-streaming#event-types"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 2091,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/quickstart#next-steps\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-usage-examples",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#further-information"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1628,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?",
"label": "{{ query }}"
},
"vars": {
"query": "Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-let-claude-think"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1533,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?",
"label": "{{ query }}"
},
"vars": {
"query": "Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-let-claude-think"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1486,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How does the streaming format for Messages responses differ from Text Completions streaming responses?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the streaming format for Messages responses differ from Text Completions streaming responses?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#3-leverage-streaming"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1248,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How does the streaming format for Messages responses differ from Text Completions streaming responses?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the streaming format for Messages responses differ from Text Completions streaming responses?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#3-leverage-streaming"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1353,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/quickstart#next-steps\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook",
"https://docs.claude.com/en/docs/welcome#develop-with-claude",
"https://docs.claude.com/en/docs/welcome#get-started"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3638,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How does the streaming format for Messages responses differ from Text Completions streaming responses?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the streaming format for Messages responses differ from Text Completions streaming responses?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#3-leverage-streaming"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude",
"https://docs.claude.com/en/docs/welcome#develop-with-claude",
"https://docs.claude.com/en/docs/welcome#get-started"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1179,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/welcome#get-started",
"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude",
"https://docs.claude.com/en/docs/welcome#develop-with-claude"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1251,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?",
"label": "{{ query }}"
},
"vars": {
"query": "Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#when-to-chain-prompts"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3546,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#when-to-chain-prompts",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1490,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#when-to-chain-prompts",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1446,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?",
"label": "{{ query }}"
},
"vars": {
"query": "What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/messages-streaming#error-events\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#error-events",
"https://docs.claude.com/en/api/streaming#error-event-types",
"https://docs.claude.com/en/api/errors#http-errors"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1073,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?",
"label": "{{ query }}"
},
"vars": {
"query": "What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/messages-streaming#error-events\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#error-events",
"https://docs.claude.com/en/api/streaming#error-event-types",
"https://docs.claude.com/en/api/errors#http-errors"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1205,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?",
"label": "{{ query }}"
},
"vars": {
"query": "What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/messages-streaming#error-events\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#error-events",
"https://docs.claude.com/en/api/streaming#error-event-types",
"https://docs.claude.com/en/api/errors#http-errors"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#when-to-chain-prompts"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3218,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#getting-started-with-voyage-ai",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1260,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#getting-started-with-voyage-ai",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1307,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?",
"label": "{{ query }}"
},
"vars": {
"query": "When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#input-json-delta",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/api/messages-streaming#text-delta"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1308,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?",
"label": "{{ query }}"
},
"vars": {
"query": "When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#input-json-delta",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/api/messages-streaming#text-delta"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1372,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?",
"label": "{{ query }}"
},
"vars": {
"query": "When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#input-json-delta",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/api/messages-streaming#text-delta"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 3016,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1363,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1322,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/intro-to-claude#model-options",
"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations",
"https://docs.claude.com/en/docs/intro-to-claude#implementing-claude"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1275,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude",
"https://docs.claude.com/en/docs/welcome#get-started",
"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 9837,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations",
"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude",
"https://docs.claude.com/en/docs/intro-to-claude#model-options"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1406,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations",
"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude",
"https://docs.claude.com/en/docs/intro-to-claude#model-options"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?",
"label": "{{ query }}"
},
"vars": {
"query": "As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/claude-apps#may-1st-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024",
"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024",
"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability"
]
},
"success": true,
"score": 0.6666666666666666,
"namedScores": {},
"latencyMs": 1268,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?",
"label": "{{ query }}"
},
"vars": {
"query": "As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/claude-apps#may-1st-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024",
"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024",
"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability"
]
},
"success": true,
"score": 0.6666666666666666,
"namedScores": {},
"latencyMs": 1303,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prompt-generator#next-steps",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 3510,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1565,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1540,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?",
"label": "{{ query }}"
},
"vars": {
"query": "When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources",
"https://docs.claude.com/en/docs/welcome#develop-with-claude",
"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1194,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?",
"label": "{{ query }}"
},
"vars": {
"query": "When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/api#may-10th-2024",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1253,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?",
"label": "{{ query }}"
},
"vars": {
"query": "When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/api#may-10th-2024",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?",
"label": "{{ query }}"
},
"vars": {
"query": "Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#api-model-names\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family",
"https://docs.claude.com/en/docs/about-claude/models#model-comparison",
"https://docs.claude.com/en/docs/welcome#models"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1257,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?",
"label": "{{ query }}"
},
"vars": {
"query": "Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#api-model-names\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/welcome#models",
"https://docs.claude.com/en/docs/about-claude/models#model-comparison"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1350,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?",
"label": "{{ query }}"
},
"vars": {
"query": "Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#api-model-names\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/welcome#models",
"https://docs.claude.com/en/docs/about-claude/models#model-comparison"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 0,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1318,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1290,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?",
"label": "{{ query }}"
},
"vars": {
"query": "As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/claude-apps#may-1st-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024",
"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024",
"https://docs.claude.com/en/release-notes/claude-apps#may-1st-2024"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 8043,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can using examples in prompts improve Claude's performance on complex tasks?",
"label": "{{ query }}"
},
"vars": {
"query": "How can using examples in prompts improve Claude's performance on complex tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#iterating-your-prompt-for-better-performance",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1395,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can using examples in prompts improve Claude's performance on complex tasks?",
"label": "{{ query }}"
},
"vars": {
"query": "How can using examples in prompts improve Claude's performance on complex tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#iterating-your-prompt-for-better-performance",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1433,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#delta-types",
"https://docs.claude.com/en/api/messages-streaming#input-json-delta",
"https://docs.claude.com/en/api/messages-streaming#text-delta"
]
},
"success": true,
"score": 0.8571428571428571,
"namedScores": {},
"latencyMs": 1231,
"gradingResult": {
"pass": true,
"score": 0.8571428571428571,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8571428571428571,
"reason": "Precision: 1.0 \n Recall: 0.75 \n F1 Score: 0.8571428571428571 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#delta-types",
"https://docs.claude.com/en/api/messages-streaming#input-json-delta",
"https://docs.claude.com/en/api/messages-streaming#text-delta"
]
},
"success": true,
"score": 0.8571428571428571,
"namedScores": {},
"latencyMs": 1250,
"gradingResult": {
"pass": true,
"score": 0.8571428571428571,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8571428571428571,
"reason": "Precision: 1.0 \n Recall: 0.75 \n F1 Score: 0.8571428571428571 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 8149,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#delta-types",
"https://docs.claude.com/en/api/messages-streaming#input-json-delta",
"https://docs.claude.com/en/api/messages-streaming#text-delta"
]
},
"success": true,
"score": 0.8571428571428571,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8571428571428571,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8571428571428571,
"reason": "Precision: 1.0 \n Recall: 0.75 \n F1 Score: 0.8571428571428571 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases",
"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1302,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can using examples in prompts improve Claude's performance on complex tasks?",
"label": "{{ query }}"
},
"vars": {
"query": "How can using examples in prompts improve Claude's performance on complex tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#iterating-your-prompt-for-better-performance",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 3354,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases",
"https://docs.claude.com/en/docs/intro-to-claude#implementing-claude"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1387,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#event-types\",\"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response",
"https://docs.claude.com/en/api/messages-streaming#event-types",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1282,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#event-types\",\"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response",
"https://docs.claude.com/en/api/messages-streaming#event-types",
"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1475,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases",
"https://docs.claude.com/en/docs/welcome#key-capabilities",
"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 3452,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?",
"label": "{{ query }}"
},
"vars": {
"query": "What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\",\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/vision#evaluate-image-size",
"https://docs.claude.com/en/api/messages-examples#vision",
"https://docs.claude.com/en/docs/build-with-claude/vision#faq"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1502,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?",
"label": "{{ query }}"
},
"vars": {
"query": "What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\",\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/rate-limits#about-our-limits",
"https://docs.claude.com/en/docs/build-with-claude/vision#evaluate-image-size",
"https://docs.claude.com/en/api/messages-examples#vision"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1489,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#event-types\",\"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response",
"https://docs.claude.com/en/api/messages-streaming#event-types",
"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 3489,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?",
"label": "{{ query }}"
},
"vars": {
"query": "When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#next-steps"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1541,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?",
"label": "{{ query }}"
},
"vars": {
"query": "When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1512,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What two steps are needed before running a classification evaluation on Claude according to the documentation?",
"label": "{{ query }}"
},
"vars": {
"query": "What two steps are needed before running a classification evaluation on Claude according to the documentation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#3-run-your-eval\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#deploy-your-classifier",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1259,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What two steps are needed before running a classification evaluation on Claude according to the documentation?",
"label": "{{ query }}"
},
"vars": {
"query": "What two steps are needed before running a classification evaluation on Claude according to the documentation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#3-run-your-eval\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#deploy-your-classifier"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1278,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?",
"label": "{{ query }}"
},
"vars": {
"query": "What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\",\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/vision#evaluate-image-size",
"https://docs.claude.com/en/docs/build-with-claude/vision#faq",
"https://docs.claude.com/en/api/messages-examples#vision"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3939,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What two steps are needed before running a classification evaluation on Claude according to the documentation?",
"label": "{{ query }}"
},
"vars": {
"query": "What two steps are needed before running a classification evaluation on Claude according to the documentation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#3-run-your-eval\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#deploy-your-classifier"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you use the content parameter in the messages list to influence Claude's response?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you use the content parameter in the messages list to influence Claude's response?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#advanced-use",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth",
"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1437,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you use the content parameter in the messages list to influence Claude's response?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you use the content parameter in the messages list to influence Claude's response?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#advanced-use",
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1462,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1229,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1222,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.5 \n Recall: 0.5 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "Precision is 0.5",
"named_scores": {
"Precision": 0.5
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Precision is 0.5",
"named_scores": {
"Precision": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you use the content parameter in the messages list to influence Claude's response?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you use the content parameter in the messages list to influence Claude's response?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth",
"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3727,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-and-configure-the-aws-cli\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#api-model-names",
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests",
"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1395,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-and-configure-the-aws-cli\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#accessing-bedrock",
"https://docs.claude.com/en/docs/welcome#get-started",
"https://docs.claude.com/en/docs/quickstart#prerequisites"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1426,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?",
"label": "{{ query }}"
},
"vars": {
"query": "When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#forcing-tool-use"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 7980,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you check which Claude models are available in a specific AWS region using the AWS CLI?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you check which Claude models are available in a specific AWS region using the AWS CLI?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#subscribe-to-anthropic-models\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models",
"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability",
"https://docs.claude.com/en/docs/intro-to-claude#model-options"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1334,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you check which Claude models are available in a specific AWS region using the AWS CLI?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you check which Claude models are available in a specific AWS region using the AWS CLI?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#subscribe-to-anthropic-models\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models",
"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability",
"https://docs.claude.com/en/docs/about-claude/models#model-names"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1312,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?",
"label": "{{ query }}"
},
"vars": {
"query": "What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1355,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?",
"label": "{{ query }}"
},
"vars": {
"query": "What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1482,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?",
"label": "{{ query }}"
},
"vars": {
"query": "What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-and-configure-the-aws-cli\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#subscribe-to-anthropic-models",
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests",
"https://docs.claude.com/en/docs/quickstart#prerequisites"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 4005,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How do the streaming API delta formats differ between tool_use content blocks and text content blocks?",
"label": "{{ query }}"
},
"vars": {
"query": "How do the streaming API delta formats differ between tool_use content blocks and text content blocks?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#input-json-delta",
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#delta-types"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1537,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How do the streaming API delta formats differ between tool_use content blocks and text content blocks?",
"label": "{{ query }}"
},
"vars": {
"query": "How do the streaming API delta formats differ between tool_use content blocks and text content blocks?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#input-json-delta",
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#delta-types"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1577,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the image file size limits when uploading images to Claude using the API versus on claude.ai?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the image file size limits when uploading images to Claude using the API versus on claude.ai?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/vision#faq",
"https://docs.claude.com/en/docs/build-with-claude/vision#evaluate-image-size",
"https://docs.claude.com/en/docs/build-with-claude/vision#ensuring-image-quality"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1222,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the image file size limits when uploading images to Claude using the API versus on claude.ai?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the image file size limits when uploading images to Claude using the API versus on claude.ai?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/vision#faq",
"https://docs.claude.com/en/api/rate-limits#about-our-limits",
"https://docs.claude.com/en/docs/build-with-claude/vision#ensuring-image-quality"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1250,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the image file size limits when uploading images to Claude using the API versus on claude.ai?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the image file size limits when uploading images to Claude using the API versus on claude.ai?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/vision#faq",
"https://docs.claude.com/en/api/rate-limits#about-our-limits",
"https://docs.claude.com/en/docs/build-with-claude/vision#ensuring-image-quality"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How do the streaming API delta formats differ between tool_use content blocks and text content blocks?",
"label": "{{ query }}"
},
"vars": {
"query": "How do the streaming API delta formats differ between tool_use content blocks and text content blocks?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-streaming#input-json-delta",
"https://docs.claude.com/en/api/messages-streaming#text-delta",
"https://docs.claude.com/en/api/messages-streaming#delta-types"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 3352,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?",
"label": "{{ query }}"
},
"vars": {
"query": "What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/intro-to-claude#model-options\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/intro-to-claude#model-options",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1295,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?",
"label": "{{ query }}"
},
"vars": {
"query": "What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/intro-to-claude#model-options\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/intro-to-claude#model-options",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1368,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?",
"label": "{{ query }}"
},
"vars": {
"query": "What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1291,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?",
"label": "{{ query }}"
},
"vars": {
"query": "What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1295,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?",
"label": "{{ query }}"
},
"vars": {
"query": "What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic",
"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you check which Claude models are available in a specific AWS region using the AWS CLI?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you check which Claude models are available in a specific AWS region using the AWS CLI?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#subscribe-to-anthropic-models\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models",
"https://docs.claude.com/en/api/claude-on-amazon-bedrock#api-model-names",
"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 8622,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/welcome#develop-with-claude\",\"https://docs.claude.com/en/docs/quickstart#next-steps\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/welcome#develop-with-claude",
"https://docs.claude.com/en/docs/quickstart#next-steps",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1373,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/welcome#develop-with-claude\",\"https://docs.claude.com/en/docs/quickstart#next-steps\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/quickstart#next-steps",
"https://docs.claude.com/en/api/#accessing-the-api",
"https://docs.claude.com/en/docs/welcome#develop-with-claude"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1494,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?",
"label": "{{ query }}"
},
"vars": {
"query": "What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/intro-to-claude#model-options\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model",
"https://docs.claude.com/en/docs/about-claude/models#model-comparison"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3757,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#context-window\",\"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation",
"https://docs.claude.com/en/docs/resources/glossary#context-window",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#use-retrieval-for-contextual-consistency"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1607,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#context-window\",\"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation",
"https://docs.claude.com/en/docs/resources/glossary#context-window",
"https://docs.claude.com/en/docs/resources/glossary#tokens"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1554,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?",
"label": "{{ query }}"
},
"vars": {
"query": "How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results",
"https://docs.claude.com/en/docs/intro-to-claude#implementing-claude",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1316,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?",
"label": "{{ query }}"
},
"vars": {
"query": "How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1334,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?",
"label": "{{ query }}"
},
"vars": {
"query": "How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/welcome#develop-with-claude\",\"https://docs.claude.com/en/docs/quickstart#next-steps\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook",
"https://docs.claude.com/en/docs/quickstart#next-steps",
"https://docs.claude.com/en/docs/welcome#develop-with-claude"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 4931,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "Which Claude model has the fastest comparative latency according to the comparison tables?",
"label": "{{ query }}"
},
"vars": {
"query": "Which Claude model has the fastest comparative latency according to the comparison tables?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/models#model-comparison",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1229,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "Which Claude model has the fastest comparative latency according to the comparison tables?",
"label": "{{ query }}"
},
"vars": {
"query": "Which Claude model has the fastest comparative latency according to the comparison tables?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/models#model-comparison",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/welcome#models"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1253,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "Which Claude model has the fastest comparative latency according to the comparison tables?",
"label": "{{ query }}"
},
"vars": {
"query": "Which Claude model has the fastest comparative latency according to the comparison tables?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/models#model-comparison",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification",
"https://docs.claude.com/en/docs/welcome#models"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?",
"correct_chunks": "[\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns",
"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth",
"https://docs.claude.com/en/api/client-sdks#python"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1414,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?",
"correct_chunks": "[\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns",
"https://docs.claude.com/en/api/client-sdks#python",
"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1410,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?",
"label": "{{ query }}"
},
"vars": {
"query": "How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#examples\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1307,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?",
"label": "{{ query }}"
},
"vars": {
"query": "How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#examples\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1296,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?",
"label": "{{ query }}"
},
"vars": {
"query": "How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#examples\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#choosing-a-model",
"https://docs.claude.com/en/docs/about-claude/models#model-comparison",
"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1248,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#choosing-a-model",
"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family",
"https://docs.claude.com/en/docs/about-claude/models#model-comparison"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1328,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/tool-use#choosing-a-model",
"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family",
"https://docs.claude.com/en/docs/about-claude/models#model-comparison"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 0,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?",
"label": "{{ query }}"
},
"vars": {
"query": "How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#context-window\",\"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation",
"https://docs.claude.com/en/docs/resources/glossary#context-window",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#2-optimize-prompt-and-output-length"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 9206,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?",
"correct_chunks": "[\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns",
"https://docs.claude.com/en/api/client-sdks#python",
"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 5221,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?",
"label": "{{ query }}"
},
"vars": {
"query": "What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1513,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?",
"label": "{{ query }}"
},
"vars": {
"query": "What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1449,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How should you evaluate a model's performance on a ticket routing classifier?",
"label": "{{ query }}"
},
"vars": {
"query": "How should you evaluate a model's performance on a ticket routing classifier?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1315,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?",
"label": "{{ query }}"
},
"vars": {
"query": "What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1085,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?",
"label": "{{ query }}"
},
"vars": {
"query": "What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?",
"label": "{{ query }}"
},
"vars": {
"query": "What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?",
"label": "{{ query }}"
},
"vars": {
"query": "What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#defining-the-task"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 3533,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How should you evaluate a model's performance on a ticket routing classifier?",
"label": "{{ query }}"
},
"vars": {
"query": "How should you evaluate a model's performance on a ticket routing classifier?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3437,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/welcome#models",
"https://docs.claude.com/en/docs/resources/glossary#pretraining",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1370,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/welcome#models",
"https://docs.claude.com/en/docs/resources/glossary#pretraining",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1219,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer",
"https://docs.claude.com/en/docs/resources/glossary#pretraining",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak"
]
},
"success": true,
"score": 0.6666666666666666,
"namedScores": {},
"latencyMs": 1375,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer",
"https://docs.claude.com/en/docs/resources/glossary#pretraining",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak"
]
},
"success": true,
"score": 0.6666666666666666,
"namedScores": {},
"latencyMs": 1393,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer",
"https://docs.claude.com/en/docs/resources/glossary#pretraining",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak"
]
},
"success": true,
"score": 0.6666666666666666,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How should you evaluate a model's performance on a ticket routing classifier?",
"label": "{{ query }}"
},
"vars": {
"query": "How should you evaluate a model's performance on a ticket routing classifier?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier",
"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 6594,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/resources/glossary#pretraining",
"https://docs.claude.com/en/docs/resources/glossary#llm",
"https://docs.claude.com/en/docs/resources/glossary#rlhf"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 3803,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How can you authenticate with GCP before running requests to access Claude models on Vertex AI?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you authenticate with GCP before running requests to access Claude models on Vertex AI?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#accessing-vertex-ai\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-vertex-ai#accessing-vertex-ai",
"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests",
"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1621,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How can you authenticate with GCP before running requests to access Claude models on Vertex AI?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you authenticate with GCP before running requests to access Claude models on Vertex AI?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#accessing-vertex-ai\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests",
"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude",
"https://docs.claude.com/en/api/claude-on-vertex-ai#api-model-names"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1721,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?",
"label": "{{ query }}"
},
"vars": {
"query": "What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources",
"https://docs.claude.com/en/docs/quickstart#next-steps",
"https://docs.claude.com/en/release-notes/api#may-10th-2024"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1471,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?",
"label": "{{ query }}"
},
"vars": {
"query": "What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/api#may-10th-2024",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources",
"https://docs.claude.com/en/docs/quickstart#next-steps"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1466,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How can you authenticate with GCP before running requests to access Claude models on Vertex AI?",
"label": "{{ query }}"
},
"vars": {
"query": "How can you authenticate with GCP before running requests to access Claude models on Vertex AI?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#accessing-vertex-ai\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests",
"https://docs.claude.com/en/api/claude-on-vertex-ai#install-an-sdk-for-accessing-vertex-ai",
"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3309,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?",
"label": "{{ query }}"
},
"vars": {
"query": "On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024",
"https://docs.claude.com/en/release-notes/api#june-20th-2024",
"https://docs.claude.com/en/docs/intro-to-claude#claude-3-5-family"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1367,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?",
"label": "{{ query }}"
},
"vars": {
"query": "On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024",
"https://docs.claude.com/en/release-notes/api#june-20th-2024",
"https://docs.claude.com/en/docs/intro-to-claude#claude-3-5-family"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1388,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?",
"label": "{{ query }}"
},
"vars": {
"query": "What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/api#may-10th-2024",
"https://docs.claude.com/en/docs/welcome#develop-with-claude",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 3911,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?",
"label": "{{ query }}"
},
"vars": {
"query": "When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output",
"https://docs.claude.com/en/docs/resources/glossary#tokens"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1305,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?",
"label": "{{ query }}"
},
"vars": {
"query": "When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth",
"https://docs.claude.com/en/api/messages-examples#basic-request-and-response",
"https://docs.claude.com/en/docs/resources/glossary#tokens"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 1243,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What does the temperature parameter do when working with large language models?",
"label": "{{ query }}"
},
"vars": {
"query": "What does the temperature parameter do when working with large language models?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#temperature\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#2-optimize-prompt-and-output-length\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/resources/glossary#temperature",
"https://docs.claude.com/en/docs/welcome#models",
"https://docs.claude.com/en/docs/resources/glossary#tokens"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1355,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What does the temperature parameter do when working with large language models?",
"label": "{{ query }}"
},
"vars": {
"query": "What does the temperature parameter do when working with large language models?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#temperature\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#2-optimize-prompt-and-output-length\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/resources/glossary#temperature",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output",
"https://docs.claude.com/en/docs/welcome#models"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1363,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What does the temperature parameter do when working with large language models?",
"label": "{{ query }}"
},
"vars": {
"query": "What does the temperature parameter do when working with large language models?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#temperature\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#2-optimize-prompt-and-output-length\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/resources/glossary#temperature",
"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output",
"https://docs.claude.com/en/docs/welcome#models"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?",
"label": "{{ query }}"
},
"vars": {
"query": "On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024",
"https://docs.claude.com/en/release-notes/api#june-20th-2024",
"https://docs.claude.com/en/docs/intro-to-claude#claude-3-5-family"
]
},
"success": true,
"score": 0.8,
"namedScores": {},
"latencyMs": 3867,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#tips-for-effective-evaluation\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-usage-examples",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt"
]
},
"success": true,
"score": 0.3333333333333333,
"namedScores": {},
"latencyMs": 1675,
"gradingResult": {
"pass": true,
"score": 0.3333333333333333,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.3333333333333333 \n F1 Score: 0.3333333333333333 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#tips-for-effective-evaluation\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#optional-function-parameters"
]
},
"success": true,
"score": 0.3333333333333333,
"namedScores": {},
"latencyMs": 1635,
"gradingResult": {
"pass": true,
"score": 0.3333333333333333,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.3333333333333333 \n F1 Score: 0.3333333333333333 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?",
"label": "{{ query }}"
},
"vars": {
"query": "When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth",
"https://docs.claude.com/en/api/rate-limits#rate-limits",
"https://docs.claude.com/en/docs/resources/glossary#tokens"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 4162,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?",
"label": "{{ query }}"
},
"vars": {
"query": "How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#prefill-claudes-response",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1293,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?",
"label": "{{ query }}"
},
"vars": {
"query": "How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#prefill-claudes-response"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 1347,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#tips-for-effective-evaluation\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#optional-function-parameters",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#advanced-use"
]
},
"success": true,
"score": 0.3333333333333333,
"namedScores": {},
"latencyMs": 3207,
"gradingResult": {
"pass": true,
"score": 0.3333333333333333,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.3333333333333333 \n F1 Score: 0.3333333333333333 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/vision#prompt-examples",
"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision",
"https://docs.claude.com/en/docs/welcome#develop-with-claude"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1487,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision",
"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude",
"https://docs.claude.com/en/docs/welcome#develop-with-claude"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1530,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?",
"label": "{{ query }}"
},
"vars": {
"query": "How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?",
"correct_chunks": "[\"https://docs.claude.com/en/api/client-sdks#typescript\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/quickstart#set-your-api-key",
"https://docs.claude.com/en/docs/quickstart#prerequisites",
"https://docs.claude.com/en/api/#authentication"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1355,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?",
"label": "{{ query }}"
},
"vars": {
"query": "How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?",
"correct_chunks": "[\"https://docs.claude.com/en/api/client-sdks#typescript\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/#authentication",
"https://docs.claude.com/en/docs/quickstart#set-your-api-key",
"https://docs.claude.com/en/api/client-sdks#typescript"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1357,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?",
"label": "{{ query }}"
},
"vars": {
"query": "How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?",
"correct_chunks": "[\"https://docs.claude.com/en/api/client-sdks#typescript\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/#authentication",
"https://docs.claude.com/en/docs/quickstart#set-your-api-key",
"https://docs.claude.com/en/api/client-sdks#typescript"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?",
"label": "{{ query }}"
},
"vars": {
"query": "How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble",
"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#prefill-claudes-response",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response"
]
},
"success": true,
"score": 0.5,
"namedScores": {},
"latencyMs": 4071,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results",
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering",
"https://docs.claude.com/en/docs/resources/glossary#hhh"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1538,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering",
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1545,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?",
"label": "{{ query }}"
},
"vars": {
"query": "What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision",
"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook",
"https://docs.claude.com/en/api/messages-examples#vision"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 5134,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/welcome#models",
"https://docs.claude.com/en/docs/about-claude/models#model-comparison",
"https://docs.claude.com/en/docs/resources/glossary#pretraining"
]
},
"success": true,
"score": 0.3333333333333333,
"namedScores": {},
"latencyMs": 1350,
"gradingResult": {
"pass": true,
"score": 0.3333333333333333,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.3333333333333333 \n F1 Score: 0.3333333333333333 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/welcome#models",
"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude"
]
},
"success": false,
"score": 0,
"namedScores": {},
"latencyMs": 1310,
"error": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?",
"label": "{{ query }}"
},
"vars": {
"query": "What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results",
"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude",
"https://docs.claude.com/en/docs/about-claude/models#prompt-and-output-performance"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 3868,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "What is the IPv6 address range used by Anthropic?",
"label": "{{ query }}"
},
"vars": {
"query": "What is the IPv6 address range used by Anthropic?",
"correct_chunks": "[\"https://docs.claude.com/en/api/ip-addresses#ipv6\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/ip-addresses#ipv6"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 1303,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "What is the IPv6 address range used by Anthropic?",
"label": "{{ query }}"
},
"vars": {
"query": "What is the IPv6 address range used by Anthropic?",
"correct_chunks": "[\"https://docs.claude.com/en/api/ip-addresses#ipv6\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/ip-addresses#ipv6"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 1362,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What is the IPv6 address range used by Anthropic?",
"label": "{{ query }}"
},
"vars": {
"query": "What is the IPv6 address range used by Anthropic?",
"correct_chunks": "[\"https://docs.claude.com/en/api/ip-addresses#ipv6\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/ip-addresses#ipv6"
]
},
"success": true,
"score": 1,
"namedScores": {},
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_base"
},
"prompt": {
"raw": "When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?",
"label": "{{ query }}"
},
"vars": {
"query": "When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/api/client-sdks#python",
"https://docs.claude.com/en/docs/quickstart#call-the-api",
"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#advanced-use"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1533,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_two"
},
"prompt": {
"raw": "When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?",
"label": "{{ query }}"
},
"vars": {
"query": "When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/quickstart#set-your-api-key",
"https://docs.claude.com/en/api/client-sdks#python",
"https://docs.claude.com/en/api/client-sdks#typescript"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 1535,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?",
"label": "{{ query }}"
},
"vars": {
"query": "What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/resources/glossary#pretraining",
"https://docs.claude.com/en/docs/resources/glossary#fine-tuning",
"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison"
]
},
"success": true,
"score": 0.6666666666666666,
"namedScores": {},
"latencyMs": 3517,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
},
{
"provider": {
"id": "python:provider_retrieval.py:retrieve_level_three"
},
"prompt": {
"raw": "When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?",
"label": "{{ query }}"
},
"vars": {
"query": "When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"response": {
"output": [
"https://docs.claude.com/en/docs/quickstart#set-your-api-key",
"https://docs.claude.com/en/api/client-sdks#python",
"https://docs.claude.com/en/docs/quickstart#call-the-api"
]
},
"success": true,
"score": 0.4,
"namedScores": {},
"latencyMs": 4568,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
}
}
],
"stats": {
"successes": 265,
"failures": 35,
"tokenUsage": {
"total": 0,
"prompt": 0,
"completion": 0,
"cached": 0
}
},
"table": {
"head": {
"prompts": [
{
"raw": "{{ query }}",
"label": "{{ query }}",
"id": "66df46182523d473823ff69a7aad542f6c788ca2e644faeeacbe483c9482be41",
"provider": "python:provider_retrieval.py:retrieve_base",
"metrics": {
"score": 50.02380952380948,
"testPassCount": 83,
"testFailCount": 17,
"assertPassCount": 479,
"assertFailCount": 16,
"totalLatencyMs": 351264,
"tokenUsage": {
"total": 0,
"prompt": 0,
"completion": 0,
"cached": 0
},
"namedScores": {},
"cost": 0
}
},
{
"raw": "{{ query }}",
"label": "{{ query }}",
"id": "66df46182523d473823ff69a7aad542f6c788ca2e644faeeacbe483c9482be41",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"metrics": {
"score": 53.823809523809466,
"testPassCount": 90,
"testFailCount": 10,
"assertPassCount": 490,
"assertFailCount": 10,
"totalLatencyMs": 228464,
"tokenUsage": {
"total": 0,
"prompt": 0,
"completion": 0,
"cached": 0
},
"namedScores": {},
"cost": 0
}
},
{
"raw": "{{ query }}",
"label": "{{ query }}",
"id": "66df46182523d473823ff69a7aad542f6c788ca2e644faeeacbe483c9482be41",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"metrics": {
"score": 54.02380952380946,
"testPassCount": 92,
"testFailCount": 8,
"assertPassCount": 492,
"assertFailCount": 8,
"totalLatencyMs": 344289,
"tokenUsage": {
"total": 0,
"prompt": 0,
"completion": 0,
"cached": 0
},
"namedScores": {},
"cost": 0
}
}
],
"vars": [
"correct_chunks",
"query"
]
},
"body": [
{
"description": "Row #1",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\"]",
"prompt": "How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 106010,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\"]",
"prompt": "How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 96901,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#accessing-the-evaluate-feature\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\"]",
"prompt": "How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 107527,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #1"
},
"vars": [
"[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]",
"How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?"
]
},
{
"description": "Row #2",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]",
"prompt": "What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 110531,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]",
"prompt": "What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1011,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]",
"prompt": "What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #2"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\"]",
"What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?"
]
},
{
"description": "Row #3",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model\"]",
"prompt": "What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 957,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model\"]",
"prompt": "What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model\"]",
"prompt": "What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #3"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]",
"What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?"
]
},
{
"description": "Row #4",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\"]",
"prompt": "What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 975,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\"]",
"prompt": "What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\"]",
"prompt": "What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #4"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\"]",
"What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?"
]
},
{
"description": "Row #5",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/prompt-validation#examples\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]",
"prompt": "What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1007,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/prompt-validation#examples\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]",
"prompt": "What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/prompt-validation#examples\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]",
"prompt": "What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/prompt-validation#examples\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #5"
},
"vars": [
"[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/prompt-validation#examples\"]",
"What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?"
]
},
{
"description": "Row #6",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]",
"prompt": "How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 997,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]",
"prompt": "How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]",
"prompt": "How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #6"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]",
"How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?"
]
},
{
"description": "Row #7",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/api#june-27th-2024\",\"https://docs.claude.com/en/release-notes/api#may-30th-2024\",\"https://docs.claude.com/en/api/rate-limits#about-our-limits\"]",
"prompt": "When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1030,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/api#june-27th-2024\",\"https://docs.claude.com/en/release-notes/api#may-30th-2024\",\"https://docs.claude.com/en/api/rate-limits#about-our-limits\"]",
"prompt": "When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/api#june-27th-2024\",\"https://docs.claude.com/en/release-notes/api#may-30th-2024\",\"https://docs.claude.com/en/api/rate-limits#about-our-limits\"]",
"prompt": "When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #7"
},
"vars": [
"[\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]",
"When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?"
]
},
{
"description": "Row #8",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot\"]",
"prompt": "When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 992,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot\"]",
"prompt": "When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot\"]",
"prompt": "When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #8"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot\"]",
"When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?"
]
},
{
"description": "Row #9",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\"]",
"prompt": "How can I use Claude to more easily digest the content of long PDF documents?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1226,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude\"]",
"prompt": "How can I use Claude to more easily digest the content of long PDF documents?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 928,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\"]",
"prompt": "How can I use Claude to more easily digest the content of long PDF documents?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can I use Claude to more easily digest the content of long PDF documents?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/docs/build-with-claude/vision#before-you-upload\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #9"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/docs/build-with-claude/vision#before-you-upload\"]",
"How can I use Claude to more easily digest the content of long PDF documents?"
]
},
{
"description": "Row #10",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/api/rate-limits#response-headers\",\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]",
"prompt": "According to the documentation, where can you view your organization's current API rate limits in the Claude Console?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1543,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/rate-limits#response-headers\",\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]",
"prompt": "According to the documentation, where can you view your organization's current API rate limits in the Claude Console?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1520,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/api#june-27th-2024\",\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/api/rate-limits#rate-limits\"]",
"prompt": "According to the documentation, where can you view your organization's current API rate limits in the Claude Console?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 2784,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "According to the documentation, where can you view your organization's current API rate limits in the Claude Console?",
"correct_chunks": "[\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #10"
},
"vars": [
"[\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]",
"According to the documentation, where can you view your organization's current API rate limits in the Claude Console?"
]
},
{
"description": "Row #11",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\"]",
"prompt": "How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1227,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#deploy-your-classifier\"]",
"prompt": "How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1105,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\"]",
"prompt": "How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #11"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]",
"How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?"
]
},
{
"description": "Row #12",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\"]",
"prompt": "How can you specify a system prompt using the Text Completions API versus the Messages API?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1816,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\"]",
"prompt": "How can you specify a system prompt using the Text Completions API versus the Messages API?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1828,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\"]",
"prompt": "How can you specify a system prompt using the Text Completions API versus the Messages API?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3415,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you specify a system prompt using the Text Completions API versus the Messages API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/prompt-validation#examples\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #12"
},
"vars": [
"[\"https://docs.claude.com/en/api/prompt-validation#examples\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\"]",
"How can you specify a system prompt using the Text Completions API versus the Messages API?"
]
},
{
"description": "Row #13",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\"]",
"prompt": "How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1235,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\"]",
"prompt": "How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\"]",
"prompt": "How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #13"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\"]",
"How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?"
]
},
{
"description": "Row #14",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\"]",
"prompt": "When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1304,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model\"]",
"prompt": "When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1287,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model\"]",
"prompt": "When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 4007,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#example-data\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #14"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#example-data\"]",
"When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?"
]
},
{
"description": "Row #15",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/intro-to-claude#implementing-claude\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude\"]",
"prompt": "Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1196,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\",\"https://docs.claude.com/en/docs/build-with-claude/vision#prompt-examples\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\"]",
"prompt": "Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1234,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#iterating-your-prompt-for-better-performance\"]",
"prompt": "Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3360,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#next-steps\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #15"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/define-success#next-steps\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\"]",
"Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?"
]
},
{
"description": "Row #16",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\"]",
"prompt": "How does the Messages API handle mid-response prompting compared to the Text Completions API?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1196,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]",
"prompt": "How does the Messages API handle mid-response prompting compared to the Text Completions API?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1181,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]",
"prompt": "How does the Messages API handle mid-response prompting compared to the Text Completions API?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How does the Messages API handle mid-response prompting compared to the Text Completions API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #16"
},
"vars": [
"[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]",
"How does the Messages API handle mid-response prompting compared to the Text Completions API?"
]
},
{
"description": "Row #17",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\"]",
"prompt": "How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1442,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\"]",
"prompt": "How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1452,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#how-to-give-claude-a-role\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting\"]",
"prompt": "How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3789,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #17"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis\"]",
"How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?"
]
},
{
"description": "Row #18",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#common-success-criteria-to-consider\",\"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\"]",
"prompt": "What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1256,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#common-success-criteria-to-consider\",\"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\"]",
"prompt": "What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 5842,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/build-with-claude/define-success#common-success-criteria-to-consider\"]",
"prompt": "What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 8264,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #18"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria\"]",
"What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?"
]
},
{
"description": "Row #19",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\"]",
"prompt": "What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1011,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\"]",
"prompt": "What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\"]",
"prompt": "What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #19"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\"]",
"What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?"
]
},
{
"description": "Row #20",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#when-to-use-claude-for-classification\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading\"]",
"prompt": "How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1277,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#when-to-use-claude-for-classification\"]",
"prompt": "How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1237,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#when-to-use-claude-for-classification\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading\"]",
"prompt": "How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #20"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]",
"How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?"
]
},
{
"description": "Row #21",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#getting-started-with-voyage-ai\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#pricing\"]",
"prompt": "How can you access and deploy Voyage embeddings on AWS Marketplace?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1145,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#getting-started-with-voyage-ai\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#pricing\"]",
"prompt": "How can you access and deploy Voyage embeddings on AWS Marketplace?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1087,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#getting-started-with-voyage-ai\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#pricing\"]",
"prompt": "How can you access and deploy Voyage embeddings on AWS Marketplace?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you access and deploy Voyage embeddings on AWS Marketplace?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #21"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace\"]",
"How can you access and deploy Voyage embeddings on AWS Marketplace?"
]
},
{
"description": "Row #22",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#next-steps\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\"]",
"prompt": "When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1468,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#next-steps\"]",
"prompt": "When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1596,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\"]",
"prompt": "When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3757,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #22"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\"]",
"When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?"
]
},
{
"description": "Row #23",
"outputs": [
{
"pass": true,
"score": 0.6666666666666666,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/models#legacy-models\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\"]",
"prompt": "What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1431,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/models#legacy-models\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\"]",
"prompt": "What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1263,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/models#legacy-models\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\"]",
"prompt": "What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-models\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #23"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-models\"]",
"What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?"
]
},
{
"description": "Row #24",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\"]",
"prompt": "What is one key benefit of using examples when prompt engineering with Claude?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1185,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\"]",
"prompt": "What is one key benefit of using examples when prompt engineering with Claude?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 5750,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#crafting-effective-examples\"]",
"prompt": "What is one key benefit of using examples when prompt engineering with Claude?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3331,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What is one key benefit of using examples when prompt engineering with Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #24"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\"]",
"What is one key benefit of using examples when prompt engineering with Claude?"
]
},
{
"description": "Row #25",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\"]",
"prompt": "According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1107,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]",
"prompt": "According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1083,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]",
"prompt": "According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #25"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]",
"According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?"
]
},
{
"description": "Row #26",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-usage-examples\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template\"]",
"prompt": "How can I quickly get started using the Claude for Sheets extension with a pre-made template?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1334,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-usage-examples\"]",
"prompt": "How can I quickly get started using the Claude for Sheets extension with a pre-made template?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1310,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\"]",
"prompt": "How can I quickly get started using the Claude for Sheets extension with a pre-made template?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3557,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can I quickly get started using the Claude for Sheets extension with a pre-made template?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #26"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets\"]",
"How can I quickly get started using the Claude for Sheets extension with a pre-made template?"
]
},
{
"description": "Row #27",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#event-types\"]",
"prompt": "How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1252,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#event-types\"]",
"prompt": "How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1264,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#event-types\"]",
"prompt": "How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #27"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]",
"How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?"
]
},
{
"description": "Row #28",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/vision#ensuring-image-quality\",\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\",\"https://docs.claude.com/en/docs/build-with-claude/vision#evaluate-image-size\"]",
"prompt": "How can you include an image as part of a Claude API request, and what image formats are currently supported?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1472,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#ensuring-image-quality\",\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\",\"https://docs.claude.com/en/api/messages-examples#vision\"]",
"prompt": "How can you include an image as part of a Claude API request, and what image formats are currently supported?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1595,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-examples#vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\",\"https://docs.claude.com/en/docs/build-with-claude/vision#how-to-use-vision\"]",
"prompt": "How can you include an image as part of a Claude API request, and what image formats are currently supported?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3095,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you include an image as part of a Claude API request, and what image formats are currently supported?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #28"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-examples#vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]",
"How can you include an image as part of a Claude API request, and what image formats are currently supported?"
]
},
{
"description": "Row #29",
"outputs": [
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\",\"https://docs.claude.com/en/docs/resources/glossary#latency\"]",
"prompt": "What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1445,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\",\"https://docs.claude.com/en/docs/resources/glossary#latency\"]",
"prompt": "What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1394,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token\",\"https://docs.claude.com/en/docs/resources/glossary#latency\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\"]",
"prompt": "What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3244,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\",\"https://docs.claude.com/en/docs/resources/glossary#latency\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #29"
},
"vars": [
"[\"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\",\"https://docs.claude.com/en/docs/resources/glossary#latency\"]",
"What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?"
]
},
{
"description": "Row #30",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\"]",
"prompt": "How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1397,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\"]",
"prompt": "How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1399,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\"]",
"prompt": "How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 4102,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #30"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]",
"How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?"
]
},
{
"description": "Row #31",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#next-steps\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\"]",
"prompt": "How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1507,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#next-steps\"]",
"prompt": "How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1468,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#forcing-tool-use\"]",
"prompt": "How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3300,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#tool-use-and-json-mode\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #31"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-examples#tool-use-and-json-mode\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]",
"How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?"
]
},
{
"description": "Row #32",
"outputs": [
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/errors#http-errors\",\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\"]",
"prompt": "According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1216,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/errors#http-errors\",\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\"]",
"prompt": "According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1217,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/errors#http-errors\",\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\"]",
"prompt": "According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/errors#http-errors\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #32"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/errors#http-errors\"]",
"According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?"
]
},
{
"description": "Row #33",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\"]",
"prompt": "What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1406,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\"]",
"prompt": "What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1881,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]",
"prompt": "What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 8176,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #33"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]",
"What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?"
]
},
{
"description": "Row #34",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Error: Error running Python script: _pickle.UnpicklingError: pickle data was truncated\nStack Trace: Error: _pickle.UnpicklingError: pickle data was truncated\n at PythonShell.parseError (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:303:21)\n at terminateIfNeeded (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:193:32)\n at ChildProcess.<anonymous> (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:185:13)\n at ChildProcess.emit (node:events:519:28)\n at ChildProcess._handle.onexit (node:internal/child_process:294:12)\n --Python Traceback: --\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 34, in <module>\n result = call_method(script_path, method_name, *data)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 18, in call_method\n spec.loader.exec_module(script_module)\n File \"<frozen importlib._bootstrap_external>\", line 940, in exec_module\n File \"<frozen importlib._bootstrap>\", line 241, in _call_with_frames_removed\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/provider_retrieval.py\", line 114, in <module>\n db_rerank.load_data(anthropic_docs_summaries)\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 108, in load_data\n self.load_db()\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 169, in load_db\n data = pickle.load(file)\n ^^^^^^^^^^^^^^^^^\n\nError: Error running Python script: _pickle.UnpicklingError: pickle data was truncated\nStack Trace: Error: _pickle.UnpicklingError: pickle data was truncated\n at PythonShell.parseError (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:303:21)\n at terminateIfNeeded (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:193:32)\n at ChildProcess.<anonymous> (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:185:13)\n at ChildProcess.emit (node:events:519:28)\n at ChildProcess._handle.onexit (node:internal/child_process:294:12)\n --Python Traceback: --\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 34, in <module>\n result = call_method(script_path, method_name, *data)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 18, in call_method\n spec.loader.exec_module(script_module)\n File \"<frozen importlib._bootstrap_external>\", line 940, in exec_module\n File \"<frozen importlib._bootstrap>\", line 241, in _call_with_frames_removed\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/provider_retrieval.py\", line 114, in <module>\n db_rerank.load_data(anthropic_docs_summaries)\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 108, in load_data\n self.load_db()\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 169, in load_db\n data = pickle.load(file)\n ^^^^^^^^^^^^^^^^^\n at runPython (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.js:50:15)\n at process.processTicksAndRejections (node:internal/process/task_queues:95:5)\n at async PythonProvider.executePythonScript (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/providers/pythonCompletion.js:52:31)\n at async Evaluator.runEval (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/evaluator.js:297:28)\n at async processEvalStep (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/evaluator.js:619:25)\n---\nError: Error running Python script: _pickle.UnpicklingError: pickle data was truncated\nStack Trace: Error: _pickle.UnpicklingError: pickle data was truncated\n at PythonShell.parseError (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:303:21)\n at terminateIfNeeded (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:193:32)\n at ChildProcess.<anonymous> (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:185:13)\n at ChildProcess.emit (node:events:519:28)\n at ChildProcess._handle.onexit (node:internal/child_process:294:12)\n --Python Traceback: --\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 34, in <module>\n result = call_method(script_path, method_name, *data)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 18, in call_method\n spec.loader.exec_module(script_module)\n File \"<frozen importlib._bootstrap_external>\", line 940, in exec_module\n File \"<frozen importlib._bootstrap>\", line 241, in _call_with_frames_removed\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/provider_retrieval.py\", line 114, in <module>\n db_rerank.load_data(anthropic_docs_summaries)\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 108, in load_data\n self.load_db()\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 169, in load_db\n data = pickle.load(file)\n ^^^^^^^^^^^^^^^^^\n\nError: Error running Python script: _pickle.UnpicklingError: pickle data was truncated\nStack Trace: Error: _pickle.UnpicklingError: pickle data was truncated\n at PythonShell.parseError (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:303:21)\n at terminateIfNeeded (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:193:32)\n at ChildProcess.<anonymous> (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/python-shell/index.js:185:13)\n at ChildProcess.emit (node:events:519:28)\n at ChildProcess._handle.onexit (node:internal/child_process:294:12)\n --Python Traceback: --\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 34, in <module>\n result = call_method(script_path, method_name, *data)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.py\", line 18, in call_method\n spec.loader.exec_module(script_module)\n File \"<frozen importlib._bootstrap_external>\", line 940, in exec_module\n File \"<frozen importlib._bootstrap>\", line 241, in _call_with_frames_removed\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/provider_retrieval.py\", line 114, in <module>\n db_rerank.load_data(anthropic_docs_summaries)\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 108, in load_data\n self.load_db()\n File \"/Users/sflamini/code/anthropic-cookbook/skills/retrieval_augmented_generation/evaluation/vectordb.py\", line 169, in load_db\n data = pickle.load(file)\n ^^^^^^^^^^^^^^^^^\n at runPython (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/python/wrapper.js:50:15)\n at process.processTicksAndRejections (node:internal/process/task_queues:95:5)\n at async PythonProvider.executePythonScript (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/providers/pythonCompletion.js:52:31)\n at async Evaluator.runEval (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/evaluator.js:297:28)\n at async processEvalStep (/Users/sflamini/.npm/_npx/81bbc6515d992ace/node_modules/promptfoo/dist/src/evaluator.js:619:25)",
"prompt": "On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 0,
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/api#may-30th-2024\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-5-family\"]",
"prompt": "On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1483,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/api#may-30th-2024\",\"https://docs.claude.com/en/docs/about-claude/models#model-names\"]",
"prompt": "On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 2978,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/api#may-30th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #34"
},
"vars": [
"[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/api#may-30th-2024\"]",
"On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?"
]
},
{
"description": "Row #35",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude\"]",
"prompt": "In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1169,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability\"]",
"prompt": "In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1252,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude\"]",
"prompt": "In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 14,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #35"
},
"vars": [
"[\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]",
"In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?"
]
},
{
"description": "Row #36",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#forcing-tool-use\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]",
"prompt": "When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 925,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#forcing-tool-use\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]",
"prompt": "When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1459,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#forcing-tool-use\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]",
"prompt": "When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 2,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #36"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]",
"When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?"
]
},
{
"description": "Row #37",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\",\"https://docs.claude.com/en/api/prompt-validation#examples\"]",
"prompt": "What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1183,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\",\"https://docs.claude.com/en/api/prompt-validation#examples\"]",
"prompt": "What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1431,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\",\"https://docs.claude.com/en/api/prompt-validation#examples\"]",
"prompt": "What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#example-evals\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #37"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#example-evals\"]",
"What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?"
]
},
{
"description": "Row #38",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-an-sdk-for-accessing-bedrock\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests\"]",
"prompt": "What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1543,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#subscribe-to-anthropic-models\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#accessing-bedrock\"]",
"prompt": "What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1577,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-an-sdk-for-accessing-bedrock\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#api-model-names\"]",
"prompt": "What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 8341,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-an-sdk-for-accessing-bedrock\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #38"
},
"vars": [
"[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-an-sdk-for-accessing-bedrock\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]",
"What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?"
]
},
{
"description": "Row #39",
"outputs": [
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak\"]",
"prompt": "When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1337,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak\"]",
"prompt": "When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1365,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak\"]",
"prompt": "When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 2928,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #39"
},
"vars": [
"[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]",
"When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?"
]
},
{
"description": "Row #40",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\"]",
"prompt": "How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1379,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-reduce-latency\"]",
"prompt": "How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1372,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-reduce-latency\"]",
"prompt": "How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #40"
},
"vars": [
"[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\"]",
"How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?"
]
},
{
"description": "Row #41",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks\",\"https://docs.claude.com/en/docs/quickstart#prerequisites\",\"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request\"]",
"prompt": "How can you stream responses from the Claude API using the Python SDK?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1396,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks\",\"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request\",\"https://docs.claude.com/en/api/#authentication\"]",
"prompt": "How can you stream responses from the Claude API using the Python SDK?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1297,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks\",\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request\"]",
"prompt": "How can you stream responses from the Claude API using the Python SDK?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3824,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you stream responses from the Claude API using the Python SDK?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #41"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks\",\"https://docs.claude.com/en/api/client-sdks#python\"]",
"How can you stream responses from the Claude API using the Python SDK?"
]
},
{
"description": "Row #42",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\",\"https://docs.claude.com/en/docs/welcome#get-started\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources\"]",
"prompt": "How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1265,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\",\"https://docs.claude.com/en/docs/welcome#get-started\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]",
"prompt": "How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1193,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\",\"https://docs.claude.com/en/docs/welcome#get-started\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources\"]",
"prompt": "How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #42"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\"]",
"How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?"
]
},
{
"description": "Row #43",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\"]",
"prompt": "What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1322,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\"]",
"prompt": "What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1280,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#grading-evals\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\"]",
"prompt": "What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #43"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]",
"What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?"
]
},
{
"description": "Row #44",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\"]",
"prompt": "What are the two required fields in a content_block_delta event for a text delta type?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1478,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\"]",
"prompt": "What are the two required fields in a content_block_delta event for a text delta type?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1507,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#event-types\"]",
"prompt": "What are the two required fields in a content_block_delta event for a text delta type?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 2091,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the two required fields in a content_block_delta event for a text delta type?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #44"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]",
"What are the two required fields in a content_block_delta event for a text delta type?"
]
},
{
"description": "Row #45",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources\",\"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude\"]",
"prompt": "What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1487,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-usage-examples\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#further-information\"]",
"prompt": "What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1628,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\",\"https://docs.claude.com/en/docs/welcome#get-started\"]",
"prompt": "What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3638,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/quickstart#next-steps\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #45"
},
"vars": [
"[\"https://docs.claude.com/en/docs/quickstart#next-steps\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\"]",
"What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?"
]
},
{
"description": "Row #46",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-let-claude-think\"]",
"prompt": "Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1533,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-let-claude-think\"]",
"prompt": "Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1486,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#when-to-chain-prompts\"]",
"prompt": "Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3546,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #46"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\"]",
"Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?"
]
},
{
"description": "Row #47",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#3-leverage-streaming\"]",
"prompt": "How does the streaming format for Messages responses differ from Text Completions streaming responses?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1353,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#3-leverage-streaming\"]",
"prompt": "How does the streaming format for Messages responses differ from Text Completions streaming responses?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1248,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#3-leverage-streaming\"]",
"prompt": "How does the streaming format for Messages responses differ from Text Completions streaming responses?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How does the streaming format for Messages responses differ from Text Completions streaming responses?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #47"
},
"vars": [
"[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\"]",
"How does the streaming format for Messages responses differ from Text Completions streaming responses?"
]
},
{
"description": "Row #48",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\",\"https://docs.claude.com/en/docs/welcome#get-started\"]",
"prompt": "What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1179,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/welcome#get-started\",\"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\"]",
"prompt": "What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1251,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude\",\"https://docs.claude.com/en/docs/welcome#get-started\",\"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude\"]",
"prompt": "What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 9837,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #48"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude\"]",
"What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?"
]
},
{
"description": "Row #49",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#when-to-chain-prompts\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]",
"prompt": "How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1490,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#when-to-chain-prompts\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]",
"prompt": "How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1446,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#when-to-chain-prompts\"]",
"prompt": "How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3218,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #49"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]",
"How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?"
]
},
{
"description": "Row #50",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/errors#http-errors\"]",
"prompt": "What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1073,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/errors#http-errors\"]",
"prompt": "What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1205,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/errors#http-errors\"]",
"prompt": "What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/messages-streaming#error-events\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #50"
},
"vars": [
"[\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/messages-streaming#error-events\"]",
"What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?"
]
},
{
"description": "Row #51",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#getting-started-with-voyage-ai\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\"]",
"prompt": "What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1307,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#getting-started-with-voyage-ai\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\"]",
"prompt": "What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1260,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\"]",
"prompt": "What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3016,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #51"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]",
"What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?"
]
},
{
"description": "Row #52",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]",
"prompt": "When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1308,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]",
"prompt": "When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1372,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]",
"prompt": "When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #52"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\"]",
"When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?"
]
},
{
"description": "Row #53",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\"]",
"prompt": "What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1363,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\"]",
"prompt": "What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1322,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prompt-generator#next-steps\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\"]",
"prompt": "What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3510,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #53"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]",
"What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?"
]
},
{
"description": "Row #54",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations\",\"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\"]",
"prompt": "What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1406,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/intro-to-claude#model-options\",\"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations\",\"https://docs.claude.com/en/docs/intro-to-claude#implementing-claude\"]",
"prompt": "What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1275,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations\",\"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\"]",
"prompt": "What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #54"
},
"vars": [
"[\"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations\"]",
"What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?"
]
},
{
"description": "Row #55",
"outputs": [
{
"pass": true,
"score": 0.6666666666666666,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability\"]",
"prompt": "As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1268,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.6666666666666666,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability\"]",
"prompt": "As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1303,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-1st-2024\"]",
"prompt": "As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 8043,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/claude-apps#may-1st-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #55"
},
"vars": [
"[\"https://docs.claude.com/en/release-notes/claude-apps#may-1st-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]",
"As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?"
]
},
{
"description": "Row #56",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\"]",
"prompt": "What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1565,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\"]",
"prompt": "What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1540,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios\"]",
"prompt": "What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 8149,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #56"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\"]",
"What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?"
]
},
{
"description": "Row #57",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\",\"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude\"]",
"prompt": "When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1194,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\"]",
"prompt": "When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1253,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\"]",
"prompt": "When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #57"
},
"vars": [
"[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]",
"When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?"
]
},
{
"description": "Row #58",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/welcome#models\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\"]",
"prompt": "Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1350,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/welcome#models\"]",
"prompt": "Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1257,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/welcome#models\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\"]",
"prompt": "Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#api-model-names\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #58"
},
"vars": [
"[\"https://docs.claude.com/en/api/claude-on-vertex-ai#api-model-names\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family\"]",
"Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?"
]
},
{
"description": "Row #59",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]",
"prompt": "How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1318,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]",
"prompt": "How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1290,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]",
"prompt": "How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #59"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\"]",
"How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?"
]
},
{
"description": "Row #60",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#iterating-your-prompt-for-better-performance\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\"]",
"prompt": "How can using examples in prompts improve Claude's performance on complex tasks?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1433,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#iterating-your-prompt-for-better-performance\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\"]",
"prompt": "How can using examples in prompts improve Claude's performance on complex tasks?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1395,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#iterating-your-prompt-for-better-performance\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios\"]",
"prompt": "How can using examples in prompts improve Claude's performance on complex tasks?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3354,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can using examples in prompts improve Claude's performance on complex tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #60"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]",
"How can using examples in prompts improve Claude's performance on complex tasks?"
]
},
{
"description": "Row #61",
"outputs": [
{
"pass": true,
"score": 0.8571428571428571,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]",
"prompt": "What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1231,
"gradingResult": {
"pass": true,
"score": 0.8571428571428571,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8571428571428571,
"reason": "Precision: 1.0 \n Recall: 0.75 \n F1 Score: 0.8571428571428571 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8571428571428571,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]",
"prompt": "What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1250,
"gradingResult": {
"pass": true,
"score": 0.8571428571428571,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8571428571428571,
"reason": "Precision: 1.0 \n Recall: 0.75 \n F1 Score: 0.8571428571428571 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8571428571428571,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]",
"prompt": "What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8571428571428571,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8571428571428571,
"reason": "Precision: 1.0 \n Recall: 0.75 \n F1 Score: 0.8571428571428571 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.75,
"reason": "Recall is 0.75",
"named_scores": {
"Recall": 0.75
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8571428571428571,
"reason": "F1 is 0.8571428571428571",
"named_scores": {
"F1": 0.8571428571428571
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #61"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]",
"What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?"
]
},
{
"description": "Row #62",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\",\"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations\"]",
"prompt": "What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1302,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\",\"https://docs.claude.com/en/docs/intro-to-claude#implementing-claude\"]",
"prompt": "What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1387,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\",\"https://docs.claude.com/en/docs/welcome#key-capabilities\",\"https://docs.claude.com/en/docs/intro-to-claude#what-you-can-do-with-claude\"]",
"prompt": "What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3452,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #62"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\"]",
"What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?"
]
},
{
"description": "Row #63",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response\",\"https://docs.claude.com/en/api/messages-streaming#event-types\",\"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request\"]",
"prompt": "What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1475,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response\",\"https://docs.claude.com/en/api/messages-streaming#event-types\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\"]",
"prompt": "What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1282,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response\",\"https://docs.claude.com/en/api/messages-streaming#event-types\",\"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request\"]",
"prompt": "What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3489,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#event-types\",\"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #63"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-streaming#event-types\",\"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response\"]",
"What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?"
]
},
{
"description": "Row #64",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#evaluate-image-size\",\"https://docs.claude.com/en/api/messages-examples#vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]",
"prompt": "What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1502,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/docs/build-with-claude/vision#evaluate-image-size\",\"https://docs.claude.com/en/api/messages-examples#vision\"]",
"prompt": "What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1489,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#evaluate-image-size\",\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\",\"https://docs.claude.com/en/api/messages-examples#vision\"]",
"prompt": "What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3939,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\",\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #64"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\",\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]",
"What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?"
]
},
{
"description": "Row #65",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#next-steps\"]",
"prompt": "When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1541,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]",
"prompt": "When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1512,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#forcing-tool-use\"]",
"prompt": "When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 7980,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #65"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]",
"When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?"
]
},
{
"description": "Row #66",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#deploy-your-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\"]",
"prompt": "What two steps are needed before running a classification evaluation on Claude according to the documentation?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1259,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#deploy-your-classifier\"]",
"prompt": "What two steps are needed before running a classification evaluation on Claude according to the documentation?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1278,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#deploy-your-classifier\"]",
"prompt": "What two steps are needed before running a classification evaluation on Claude according to the documentation?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What two steps are needed before running a classification evaluation on Claude according to the documentation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#3-run-your-eval\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #66"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#3-run-your-eval\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\"]",
"What two steps are needed before running a classification evaluation on Claude according to the documentation?"
]
},
{
"description": "Row #67",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#advanced-use\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]",
"prompt": "How can you use the content parameter in the messages list to influence Claude's response?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1462,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#advanced-use\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]",
"prompt": "How can you use the content parameter in the messages list to influence Claude's response?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1437,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\"]",
"prompt": "How can you use the content parameter in the messages list to influence Claude's response?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3727,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you use the content parameter in the messages list to influence Claude's response?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #67"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]",
"How can you use the content parameter in the messages list to influence Claude's response?"
]
},
{
"description": "Row #68",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]",
"prompt": "What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1222,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.5 \n Recall: 0.5 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "Precision is 0.5",
"named_scores": {
"Precision": 0.5
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Precision is 0.5",
"named_scores": {
"Precision": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\"]",
"prompt": "What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1229,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\"]",
"prompt": "What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #68"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]",
"What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?"
]
},
{
"description": "Row #69",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#api-model-names\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability\"]",
"prompt": "What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1395,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#accessing-bedrock\",\"https://docs.claude.com/en/docs/welcome#get-started\",\"https://docs.claude.com/en/docs/quickstart#prerequisites\"]",
"prompt": "What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1426,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#subscribe-to-anthropic-models\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\",\"https://docs.claude.com/en/docs/quickstart#prerequisites\"]",
"prompt": "What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 4005,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-and-configure-the-aws-cli\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #69"
},
"vars": [
"[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-and-configure-the-aws-cli\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]",
"What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?"
]
},
{
"description": "Row #70",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\"]",
"prompt": "How can you check which Claude models are available in a specific AWS region using the AWS CLI?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1334,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability\",\"https://docs.claude.com/en/docs/about-claude/models#model-names\"]",
"prompt": "How can you check which Claude models are available in a specific AWS region using the AWS CLI?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1312,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#api-model-names\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability\"]",
"prompt": "How can you check which Claude models are available in a specific AWS region using the AWS CLI?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 8622,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you check which Claude models are available in a specific AWS region using the AWS CLI?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#subscribe-to-anthropic-models\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #70"
},
"vars": [
"[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#subscribe-to-anthropic-models\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models\"]",
"How can you check which Claude models are available in a specific AWS region using the AWS CLI?"
]
},
{
"description": "Row #71",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\"]",
"prompt": "What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1482,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\"]",
"prompt": "What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1355,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\"]",
"prompt": "What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #71"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]",
"What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?"
]
},
{
"description": "Row #72",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]",
"prompt": "How do the streaming API delta formats differ between tool_use content blocks and text content blocks?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1537,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]",
"prompt": "How do the streaming API delta formats differ between tool_use content blocks and text content blocks?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1577,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]",
"prompt": "How do the streaming API delta formats differ between tool_use content blocks and text content blocks?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3352,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How do the streaming API delta formats differ between tool_use content blocks and text content blocks?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #72"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]",
"How do the streaming API delta formats differ between tool_use content blocks and text content blocks?"
]
},
{
"description": "Row #73",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\",\"https://docs.claude.com/en/docs/build-with-claude/vision#evaluate-image-size\",\"https://docs.claude.com/en/docs/build-with-claude/vision#ensuring-image-quality\"]",
"prompt": "What are the image file size limits when uploading images to Claude using the API versus on claude.ai?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1222,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\",\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/docs/build-with-claude/vision#ensuring-image-quality\"]",
"prompt": "What are the image file size limits when uploading images to Claude using the API versus on claude.ai?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1250,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\",\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/docs/build-with-claude/vision#ensuring-image-quality\"]",
"prompt": "What are the image file size limits when uploading images to Claude using the API versus on claude.ai?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the image file size limits when uploading images to Claude using the API versus on claude.ai?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #73"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]",
"What are the image file size limits when uploading images to Claude using the API versus on claude.ai?"
]
},
{
"description": "Row #74",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]",
"prompt": "What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1368,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/intro-to-claude#model-options\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\"]",
"prompt": "What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1295,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#choosing-the-right-model\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\"]",
"prompt": "What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3757,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/intro-to-claude#model-options\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #74"
},
"vars": [
"[\"https://docs.claude.com/en/docs/intro-to-claude#model-options\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]",
"What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?"
]
},
{
"description": "Row #75",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\"]",
"prompt": "What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1295,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\"]",
"prompt": "What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1291,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\"]",
"prompt": "What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #75"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]",
"What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?"
]
},
{
"description": "Row #76",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/welcome#develop-with-claude\",\"https://docs.claude.com/en/docs/quickstart#next-steps\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\"]",
"prompt": "What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1373,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/quickstart#next-steps\",\"https://docs.claude.com/en/api/#accessing-the-api\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\"]",
"prompt": "What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1494,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/docs/quickstart#next-steps\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\"]",
"prompt": "What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 4931,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/welcome#develop-with-claude\",\"https://docs.claude.com/en/docs/quickstart#next-steps\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #76"
},
"vars": [
"[\"https://docs.claude.com/en/docs/welcome#develop-with-claude\",\"https://docs.claude.com/en/docs/quickstart#next-steps\"]",
"What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?"
]
},
{
"description": "Row #77",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation\",\"https://docs.claude.com/en/docs/resources/glossary#context-window\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#use-retrieval-for-contextual-consistency\"]",
"prompt": "How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1607,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation\",\"https://docs.claude.com/en/docs/resources/glossary#context-window\",\"https://docs.claude.com/en/docs/resources/glossary#tokens\"]",
"prompt": "How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1554,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation\",\"https://docs.claude.com/en/docs/resources/glossary#context-window\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#2-optimize-prompt-and-output-length\"]",
"prompt": "How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 9206,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#context-window\",\"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #77"
},
"vars": [
"[\"https://docs.claude.com/en/docs/resources/glossary#context-window\",\"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation\"]",
"How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?"
]
},
{
"description": "Row #78",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/intro-to-claude#implementing-claude\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets\"]",
"prompt": "How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1316,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources\"]",
"prompt": "How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1334,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources\"]",
"prompt": "How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #78"
},
"vars": [
"[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\"]",
"How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?"
]
},
{
"description": "Row #79",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\"]",
"prompt": "Which Claude model has the fastest comparative latency according to the comparison tables?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1229,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/welcome#models\"]",
"prompt": "Which Claude model has the fastest comparative latency according to the comparison tables?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1253,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\",\"https://docs.claude.com/en/docs/welcome#models\"]",
"prompt": "Which Claude model has the fastest comparative latency according to the comparison tables?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "Which Claude model has the fastest comparative latency according to the comparison tables?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #79"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\"]",
"Which Claude model has the fastest comparative latency according to the comparison tables?"
]
},
{
"description": "Row #80",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/client-sdks#python\"]",
"prompt": "How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1414,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\",\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]",
"prompt": "How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1410,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\",\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]",
"prompt": "How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 5221,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?",
"correct_chunks": "[\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #80"
},
"vars": [
"[\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]",
"How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?"
]
},
{
"description": "Row #81",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis\"]",
"prompt": "How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1307,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis\"]",
"prompt": "How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1296,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#why-use-role-prompting\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#why-use-xml-tags\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis\"]",
"prompt": "How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#examples\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #81"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#examples\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis\"]",
"How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?"
]
},
{
"description": "Row #82",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#choosing-a-model\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\"]",
"prompt": "What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1328,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#choosing-a-model\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family\"]",
"prompt": "What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1248,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#choosing-a-model\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\"]",
"prompt": "What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #82"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\"]",
"What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?"
]
},
{
"description": "Row #83",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\"]",
"prompt": "What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1513,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\"]",
"prompt": "What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1449,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#defining-the-task\"]",
"prompt": "What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3533,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #83"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]",
"What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?"
]
},
{
"description": "Row #84",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\"]",
"prompt": "How should you evaluate a model's performance on a ticket routing classifier?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 6594,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\"]",
"prompt": "How should you evaluate a model's performance on a ticket routing classifier?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1315,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#implement-claude-for-classification\"]",
"prompt": "How should you evaluate a model's performance on a ticket routing classifier?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3437,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How should you evaluate a model's performance on a ticket routing classifier?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #84"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]",
"How should you evaluate a model's performance on a ticket routing classifier?"
]
},
{
"description": "Row #85",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\"]",
"prompt": "What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1085,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\"]",
"prompt": "What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-workflow\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\"]",
"prompt": "What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #85"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]",
"What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?"
]
},
{
"description": "Row #86",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/welcome#models\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude\"]",
"prompt": "What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1370,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/welcome#models\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude\"]",
"prompt": "What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1219,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#rlhf\"]",
"prompt": "What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3803,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #86"
},
"vars": [
"[\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]",
"What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?"
]
},
{
"description": "Row #87",
"outputs": [
{
"pass": true,
"score": 0.6666666666666666,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]",
"prompt": "What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1375,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.6666666666666666,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]",
"prompt": "What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1393,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.6666666666666666,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]",
"prompt": "What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #87"
},
"vars": [
"[\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]",
"What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?"
]
},
{
"description": "Row #88",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests\",\"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#api-model-names\"]",
"prompt": "How can you authenticate with GCP before running requests to access Claude models on Vertex AI?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1721,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#accessing-vertex-ai\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests\",\"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude\"]",
"prompt": "How can you authenticate with GCP before running requests to access Claude models on Vertex AI?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1621,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#install-an-sdk-for-accessing-vertex-ai\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#model-availability\"]",
"prompt": "How can you authenticate with GCP before running requests to access Claude models on Vertex AI?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3309,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How can you authenticate with GCP before running requests to access Claude models on Vertex AI?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#accessing-vertex-ai\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #88"
},
"vars": [
"[\"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#accessing-vertex-ai\"]",
"How can you authenticate with GCP before running requests to access Claude models on Vertex AI?"
]
},
{
"description": "Row #89",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources\",\"https://docs.claude.com/en/docs/quickstart#next-steps\",\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]",
"prompt": "What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1471,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources\",\"https://docs.claude.com/en/docs/quickstart#next-steps\"]",
"prompt": "What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1466,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\"]",
"prompt": "What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3911,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #89"
},
"vars": [
"[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]",
"What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?"
]
},
{
"description": "Row #90",
"outputs": [
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024\",\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-5-family\"]",
"prompt": "On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1367,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024\",\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-5-family\"]",
"prompt": "On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1388,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024\",\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-5-family\"]",
"prompt": "On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3867,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #90"
},
"vars": [
"[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024\"]",
"On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?"
]
},
{
"description": "Row #91",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output\",\"https://docs.claude.com/en/docs/resources/glossary#tokens\"]",
"prompt": "When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1305,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.8,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/docs/resources/glossary#tokens\"]",
"prompt": "When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1243,
"gradingResult": {
"pass": true,
"score": 0.8,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.8,
"reason": "Precision: 0.6666666666666666 \n Recall: 1.0 \n F1 Score: 0.8 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.8,
"reason": "F1 is 0.8",
"named_scores": {
"F1": 0.8
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/rate-limits#rate-limits\",\"https://docs.claude.com/en/docs/resources/glossary#tokens\"]",
"prompt": "When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 4162,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #91"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]",
"When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?"
]
},
{
"description": "Row #92",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/resources/glossary#temperature\",\"https://docs.claude.com/en/docs/welcome#models\",\"https://docs.claude.com/en/docs/resources/glossary#tokens\"]",
"prompt": "What does the temperature parameter do when working with large language models?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1355,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/resources/glossary#temperature\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output\",\"https://docs.claude.com/en/docs/welcome#models\"]",
"prompt": "What does the temperature parameter do when working with large language models?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1363,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/resources/glossary#temperature\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#controlling-claudes-output\",\"https://docs.claude.com/en/docs/welcome#models\"]",
"prompt": "What does the temperature parameter do when working with large language models?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What does the temperature parameter do when working with large language models?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#temperature\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#2-optimize-prompt-and-output-length\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #92"
},
"vars": [
"[\"https://docs.claude.com/en/docs/resources/glossary#temperature\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#2-optimize-prompt-and-output-length\"]",
"What does the temperature parameter do when working with large language models?"
]
},
{
"description": "Row #93",
"outputs": [
{
"pass": true,
"score": 0.3333333333333333,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-usage-examples\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt\"]",
"prompt": "What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1675,
"gradingResult": {
"pass": true,
"score": 0.3333333333333333,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.3333333333333333 \n F1 Score: 0.3333333333333333 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.3333333333333333,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#optional-function-parameters\"]",
"prompt": "What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1635,
"gradingResult": {
"pass": true,
"score": 0.3333333333333333,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.3333333333333333 \n F1 Score: 0.3333333333333333 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.3333333333333333,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#optional-function-parameters\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#advanced-use\"]",
"prompt": "What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3207,
"gradingResult": {
"pass": true,
"score": 0.3333333333333333,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.3333333333333333 \n F1 Score: 0.3333333333333333 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#tips-for-effective-evaluation\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #93"
},
"vars": [
"[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#tips-for-effective-evaluation\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt\"]",
"What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?"
]
},
{
"description": "Row #94",
"outputs": [
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#prefill-claudes-response\"]",
"prompt": "How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1347,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#prefill-claudes-response\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\"]",
"prompt": "How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1293,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.5,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#prefill-claudes-response\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\"]",
"prompt": "How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 4071,
"gradingResult": {
"pass": true,
"score": 0.5,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "Precision: 0.3333333333333333 \n Recall: 1.0 \n F1 Score: 0.5 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "F1 is 0.5",
"named_scores": {
"F1": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #94"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble\"]",
"How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?"
]
},
{
"description": "Row #95",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision\",\"https://docs.claude.com/en/docs/intro-to-claude#start-building-with-claude\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\"]",
"prompt": "What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1530,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#prompt-examples\",\"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\"]",
"prompt": "What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1487,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/api/messages-examples#vision\"]",
"prompt": "What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 5134,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #95"
},
"vars": [
"[\"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]",
"What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?"
]
},
{
"description": "Row #96",
"outputs": [
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/quickstart#set-your-api-key\",\"https://docs.claude.com/en/docs/quickstart#prerequisites\",\"https://docs.claude.com/en/api/#authentication\"]",
"prompt": "How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1355,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/#authentication\",\"https://docs.claude.com/en/docs/quickstart#set-your-api-key\",\"https://docs.claude.com/en/api/client-sdks#typescript\"]",
"prompt": "How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1357,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/#authentication\",\"https://docs.claude.com/en/docs/quickstart#set-your-api-key\",\"https://docs.claude.com/en/api/client-sdks#typescript\"]",
"prompt": "How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 1,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?",
"correct_chunks": "[\"https://docs.claude.com/en/api/client-sdks#typescript\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #96"
},
"vars": [
"[\"https://docs.claude.com/en/api/client-sdks#typescript\",\"https://docs.claude.com/en/api/client-sdks#python\"]",
"How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?"
]
},
{
"description": "Row #97",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\",\"https://docs.claude.com/en/docs/resources/glossary#hhh\"]",
"prompt": "What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1538,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/build-with-claude/text-generation#more-resources\"]",
"prompt": "What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1545,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude\",\"https://docs.claude.com/en/docs/about-claude/models#prompt-and-output-performance\"]",
"prompt": "What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3868,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #97"
},
"vars": [
"[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\"]",
"What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?"
]
},
{
"description": "Row #98",
"outputs": [
{
"pass": true,
"score": 0.3333333333333333,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/welcome#models\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]",
"prompt": "What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1350,
"gradingResult": {
"pass": true,
"score": 0.3333333333333333,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.3333333333333333 \n F1 Score: 0.3333333333333333 \n MRR: 0.3333333333333333",
"componentResults": [
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "MRR is 0.3333333333333333",
"named_scores": {
"MRR": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Recall is 0.3333333333333333",
"named_scores": {
"Recall": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "F1 is 0.3333333333333333",
"named_scores": {
"F1": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": false,
"score": 0,
"namedScores": {},
"text": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0\n---\n[\"https://docs.claude.com/en/docs/welcome#models\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#advantages-of-using-claude\"]",
"prompt": "What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1310,
"gradingResult": {
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": false,
"score": 0,
"reason": "Precision: 0.0 \n Recall: 0.0 \n F1 Score: 0 \n MRR: 0",
"componentResults": [
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "MRR is 0",
"named_scores": {
"MRR": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Precision is 0.0",
"named_scores": {
"Precision": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "Recall is 0.0",
"named_scores": {
"Recall": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0,
"reason": "F1 is 0",
"named_scores": {
"F1": 0
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.6666666666666666,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\"]",
"prompt": "What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 3517,
"gradingResult": {
"pass": true,
"score": 0.6666666666666666,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision: 0.6666666666666666 \n Recall: 0.6666666666666666 \n F1 Score: 0.6666666666666666 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Precision is 0.6666666666666666",
"named_scores": {
"Precision": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "Recall is 0.6666666666666666",
"named_scores": {
"Recall": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.6666666666666666,
"reason": "F1 is 0.6666666666666666",
"named_scores": {
"F1": 0.6666666666666666
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #98"
},
"vars": [
"[\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]",
"What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?"
]
},
{
"description": "Row #99",
"outputs": [
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/ip-addresses#ipv6\"]",
"prompt": "What is the IPv6 address range used by Anthropic?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1362,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/ip-addresses#ipv6\"]",
"prompt": "What is the IPv6 address range used by Anthropic?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1303,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 1,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/ip-addresses#ipv6\"]",
"prompt": "What is the IPv6 address range used by Anthropic?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 0,
"gradingResult": {
"pass": true,
"score": 1,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "Precision: 1.0 \n Recall: 1.0 \n F1 Score: 1.0 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Precision is 1.0",
"named_scores": {
"Precision": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "Recall is 1.0",
"named_scores": {
"Recall": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "F1 is 1.0",
"named_scores": {
"F1": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "What is the IPv6 address range used by Anthropic?",
"correct_chunks": "[\"https://docs.claude.com/en/api/ip-addresses#ipv6\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #99"
},
"vars": [
"[\"https://docs.claude.com/en/api/ip-addresses#ipv6\"]",
"What is the IPv6 address range used by Anthropic?"
]
},
{
"description": "Row #100",
"outputs": [
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/docs/quickstart#call-the-api\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#advanced-use\"]",
"prompt": "When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?",
"provider": "python:provider_retrieval.py:retrieve_base",
"latencyMs": 1533,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 1.0",
"componentResults": [
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 1,
"reason": "MRR is 1.0",
"named_scores": {
"MRR": 1
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/quickstart#set-your-api-key\",\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/api/client-sdks#typescript\"]",
"prompt": "When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?",
"provider": "python:provider_retrieval.py:retrieve_level_two",
"latencyMs": 1535,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
},
{
"pass": true,
"score": 0.4,
"namedScores": {},
"text": "[\"https://docs.claude.com/en/docs/quickstart#set-your-api-key\",\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/docs/quickstart#call-the-api\"]",
"prompt": "When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?",
"provider": "python:provider_retrieval.py:retrieve_level_three",
"latencyMs": 4568,
"gradingResult": {
"pass": true,
"score": 0.4,
"reason": "All assertions passed",
"namedScores": {},
"tokensUsed": {
"total": 0,
"prompt": 0,
"completion": 0
},
"componentResults": [
{
"pass": true,
"score": 0.4,
"reason": "Precision: 0.3333333333333333 \n Recall: 0.5 \n F1 Score: 0.4 \n MRR: 0.5",
"componentResults": [
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
}
}
],
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "MRR is 0.5",
"named_scores": {
"MRR": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.3333333333333333,
"reason": "Precision is 0.3333333333333333",
"named_scores": {
"Precision": 0.3333333333333333
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.5,
"reason": "Recall is 0.5",
"named_scores": {
"Recall": 0.5
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
},
{
"pass": true,
"score": 0.4,
"reason": "F1 is 0.4",
"named_scores": {
"F1": 0.4
},
"assertion": {
"type": "python",
"value": "file://eval_retrieval.py"
}
}
],
"assertion": null
},
"cost": 0
}
],
"test": {
"vars": {
"query": "When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #100"
},
"vars": [
"[\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\",\"https://docs.claude.com/en/api/client-sdks#python\"]",
"When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?"
]
}
]
}
},
"config": {
"description": "Retrieval - Base Eval",
"prompts": [
"{{ query }}"
],
"providers": [
"python:provider_retrieval.py:retrieve_base",
"python:provider_retrieval.py:retrieve_level_two",
"python:provider_retrieval.py:retrieve_level_three"
],
"tests": [
{
"vars": {
"query": "How can you create multiple test cases for an evaluation in the Anthropic Evaluation tool?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #1"
},
{
"vars": {
"query": "What embeddings provider does Anthropic recommend for customized domain-specific models, and what capabilities does this provider offer?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#before-implementing-embeddings\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #2"
},
{
"vars": {
"query": "What are some key success metrics to consider when evaluating Claude's performance on a classification task, and how do they relate to choosing the right model to reduce latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#evaluation-metrics\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #3"
},
{
"vars": {
"query": "What are two ways that Claude for Sheets can improve prompt engineering workflows compared to using chained prompts?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#why-use-claude-for-sheets\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #4"
},
{
"vars": {
"query": "What happens if a prompt for the Text Completions API is missing the \"\\n\\nHuman:\" and \"\\n\\nAssistant:\" turns?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\",\"https://docs.claude.com/en/api/prompt-validation#examples\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #5"
},
{
"vars": {
"query": "How do the additional tokens required for tool use in Claude API requests impact pricing compared to regular API requests?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#pricing\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #6"
},
{
"vars": {
"query": "When will the new Anthropic Developer Console features that show API usage, billing details, and rate limits be available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #7"
},
{
"vars": {
"query": "When deciding whether to use chain-of-thought (CoT) for a task, what are two key factors to consider in order to strike the right balance between performance and latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#why-not-let-claude-think\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought#before-implementing-cot\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #8"
},
{
"vars": {
"query": "How can I use Claude to more easily digest the content of long PDF documents?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#anthropic-cookbook\",\"https://docs.claude.com/en/docs/build-with-claude/vision#before-you-upload\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #9"
},
{
"vars": {
"query": "According to the documentation, where can you view your organization's current API rate limits in the Claude Console?",
"correct_chunks": "[\"https://docs.claude.com/en/api/rate-limits#about-our-limits\",\"https://docs.claude.com/en/release-notes/api#june-27th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #10"
},
{
"vars": {
"query": "How can we measure the performance of the ticket classification system implemented using Claude beyond just accuracy?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #11"
},
{
"vars": {
"query": "How can you specify a system prompt using the Text Completions API versus the Messages API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/prompt-validation#examples\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#system-prompt\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #12"
},
{
"vars": {
"query": "How can you combine XML tags with chain of thought reasoning to create high-performance prompts for Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #13"
},
{
"vars": {
"query": "When evaluating the Claude model's performance for ticket routing, what three key metrics are calculated and what are the results for the claude-3-haiku-20240307 model on the 91 test samples?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluation-methodology\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#example-data\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #14"
},
{
"vars": {
"query": "Before starting to engineer and improve a prompt in Claude, what key things does Anthropic recommend you have in place first?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#next-steps\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#before-prompt-engineering\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #15"
},
{
"vars": {
"query": "How does the Messages API handle mid-response prompting compared to the Text Completions API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#inputs-and-outputs\",\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#putting-words-in-claudes-mouth\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #16"
},
{
"vars": {
"query": "How does Claude's response differ when given a role through a system prompt compared to not having a specific role in the financial analysis example?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-2-financial-analysis\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #17"
},
{
"vars": {
"query": "What are some quantitative metrics that can be used to measure the success of a sentiment analysis model, and how might specific targets for those metrics be determined?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/define-success#building-strong-criteria\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #18"
},
{
"vars": {
"query": "What is a power user tip mentioned in the documentation for creating high-performance prompts using XML tags?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#tagging-best-practices\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #19"
},
{
"vars": {
"query": "How can you use an LLM like Claude to automatically grade the outputs of other LLMs based on a rubric?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#tips-for-llm-based-grading\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #20"
},
{
"vars": {
"query": "How can you access and deploy Voyage embeddings on AWS Marketplace?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-on-the-aws-marketplace\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #21"
},
{
"vars": {
"query": "When using tools just to get Claude to produce JSON output following a particular schema, what key things should you do in terms of tool setup and prompting?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #22"
},
{
"vars": {
"query": "What are the key differences between the legacy Claude Instant 1.2 model and the Claude 3 Haiku model in terms of capabilities and performance?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-models\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #23"
},
{
"vars": {
"query": "What is one key benefit of using examples when prompt engineering with Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #24"
},
{
"vars": {
"query": "According to the Claude Documentation, what is one key advantage of using prompt engineering instead of fine-tuning when it comes to adapting an AI model to new domains or tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #25"
},
{
"vars": {
"query": "How can I quickly get started using the Claude for Sheets extension with a pre-made template?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#claude-for-sheets-workbook-template\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#get-started-with-claude-for-sheets\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #26"
},
{
"vars": {
"query": "How does the \"index\" field in the \"content_block_delta\" event relate to the text being streamed in a response?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#basic-streaming-request\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #27"
},
{
"vars": {
"query": "How can you include an image as part of a Claude API request, and what image formats are currently supported?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #28"
},
{
"vars": {
"query": "What is the relationship between time to first token (TTFT) and latency when evaluating a language model's performance?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#ttft-time-to-first-token\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#how-to-measure-latency\",\"https://docs.claude.com/en/docs/resources/glossary#latency\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #29"
},
{
"vars": {
"query": "How can providing Claude with examples of handling certain edge cases like implicit requests or emotional prioritization help improve its performance in routing support tickets?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#adapting-to-common-scenarios\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#prompting-claude-for-ticket-routing\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #30"
},
{
"vars": {
"query": "How does the stop_reason of \"tool_use\" relate to the overall workflow of integrating external tools with Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#tool-use-and-json-mode\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #31"
},
{
"vars": {
"query": "According to the documentation, what error event and corresponding HTTP error code may be sent during periods of high usage for the Claude API when using streaming responses?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#error-events\",\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/errors#http-errors\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #32"
},
{
"vars": {
"query": "What are the two types of deltas that can be contained in a content_block_delta event when streaming responses from the Claude API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #33"
},
{
"vars": {
"query": "On what date did Claude 3.5 Sonnet and tool use both become generally available across the Claude API, Amazon Bedrock, and Google Vertex AI?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/api#may-30th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #34"
},
{
"vars": {
"query": "In what order did Anthropic launch Claude.ai and the Claude iOS app in Canada and Europe?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #35"
},
{
"vars": {
"query": "When the API response from Claude has a stop_reason of \"tool_use\", what does this indicate and what should be done next to continue the conversation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#json-output\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#how-tool-use-works\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #36"
},
{
"vars": {
"query": "What Python libraries are used in the example code snippet for evaluating tone and style in a customer service chatbot?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#example-evals\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #37"
},
{
"vars": {
"query": "What are the two main ways to authenticate when using the Anthropic Python SDK to access Claude models on Amazon Bedrock?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-an-sdk-for-accessing-bedrock\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #38"
},
{
"vars": {
"query": "When deciding whether to implement leak-resistant prompt engineering strategies, what two factors should be considered and balanced?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#strategies-to-reduce-prompt-leak\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-prompt-leak#before-you-try-to-reduce-prompt-leak\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #39"
},
{
"vars": {
"query": "How can selecting the appropriate Claude model based on your specific requirements help reduce latency in your application?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\",\"https://docs.claude.com/en/docs/intro-to-claude#model-options\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #40"
},
{
"vars": {
"query": "How can you stream responses from the Claude API using the Python SDK?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#streaming-with-sdks\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #41"
},
{
"vars": {
"query": "How can you guide Claude's response by pre-filling part of the response, and what API parameter is used to generate a short response in this case?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\",\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #42"
},
{
"vars": {
"query": "What is more important when building an eval set for an AI system - having a larger number of test cases with automated grading, or having fewer high-quality test cases graded by humans?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#eval-design-principles\",\"https://docs.claude.com/en/docs/build-with-claude/develop-tests#building-evals-and-test-cases\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #43"
},
{
"vars": {
"query": "What are the two required fields in a content_block_delta event for a text delta type?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#delta-types\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #44"
},
{
"vars": {
"query": "What are two interactive ways to learn how to use Claude's capabilities, such as uploading PDFs and generating embeddings?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/quickstart#next-steps\",\"https://docs.claude.com/en/docs/welcome#develop-with-claude\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #45"
},
{
"vars": {
"query": "Why does breaking a task into distinct subtasks for chained prompts help improve Claude's accuracy on the overall task?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#how-to-chain-prompts\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #46"
},
{
"vars": {
"query": "How does the streaming format for Messages responses differ from Text Completions streaming responses?",
"correct_chunks": "[\"https://docs.claude.com/en/api/migrating-from-text-completions-to-messages#streaming-format\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #47"
},
{
"vars": {
"query": "What are two ways to start experimenting with Claude as a user, according to Anthropic's documentation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#get-started-with-claude\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #48"
},
{
"vars": {
"query": "How can using chain prompts help reduce errors and inconsistency in complex tasks handled by Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#why-chain-prompts\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #49"
},
{
"vars": {
"query": "What HTTP status code does an overloaded_error event correspond to in a non-streaming context for the Claude API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/streaming#error-event-types\",\"https://docs.claude.com/en/api/messages-streaming#error-events\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #50"
},
{
"vars": {
"query": "What are the two ways to specify the format in which Voyage AI returns embeddings through its HTTP API?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #51"
},
{
"vars": {
"query": "When streaming API requests that use tools, how are the input JSON deltas for tool_use content blocks sent, and how can they be accumulated and parsed by the client?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #52"
},
{
"vars": {
"query": "What are the two interactive prompt engineering tutorials that Anthropic offers, and how do they differ?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#prompt-engineering-interactive-tutorial\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #53"
},
{
"vars": {
"query": "What are some of the key capabilities that make Claude suitable for enterprise use cases requiring integration with specialized applications and processing of large volumes of sensitive data?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/intro-to-claude#enterprise-considerations\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #54"
},
{
"vars": {
"query": "As of June 2024, in which regions are Anthropic's Claude.ai API and iOS app available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/claude-apps#may-1st-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-5th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#may-13th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #55"
},
{
"vars": {
"query": "What are the two main approaches for integrating Claude into a support ticket workflow, and how do they differ in terms of scalability and ease of implementation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#introduction\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #56"
},
{
"vars": {
"query": "When did Anthropic release a prompt generator tool to help guide Claude in generating high-quality prompts, and through what interface is it available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #57"
},
{
"vars": {
"query": "Which Claude 3 model provides the best balance of intelligence and speed for high-throughput tasks like sales forecasting and targeted marketing?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#api-model-names\",\"https://docs.claude.com/en/docs/intro-to-claude#claude-3-family\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #58"
},
{
"vars": {
"query": "How can you calculate the similarity between two Voyage embedding vectors, and what is this equivalent to since Voyage embeddings are normalized to length 1?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#faq\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-embedding-example\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #59"
},
{
"vars": {
"query": "How can using examples in prompts improve Claude's performance on complex tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting#why-use-examples\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/increase-consistency#chain-prompts-for-complex-tasks\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #60"
},
{
"vars": {
"query": "What are the two types of content block deltas that can be emitted when streaming responses with tool use, and what does each delta type contain?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\",\"https://docs.claude.com/en/api/messages-streaming#streaming-request-with-tool-use\",\"https://docs.claude.com/en/api/messages-streaming#delta-types\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #61"
},
{
"vars": {
"query": "What are two key capabilities of Claude that enable it to build interactive systems and personalized user experiences?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/text-generation#text-capabilities-and-use-cases\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #62"
},
{
"vars": {
"query": "What are the key event types included in a raw HTTP stream response when using message streaming, and what is the typical order they occur in?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#event-types\",\"https://docs.claude.com/en/api/messages-streaming#raw-http-stream-response\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #63"
},
{
"vars": {
"query": "What is the maximum number of images that can be included in a single request using the Claude API compared to the claude.ai interface?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\",\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #64"
},
{
"vars": {
"query": "When Claude's response is cut off due to hitting the max_tokens limit and contains an incomplete tool use block, what should you do to get the full tool use?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#troubleshooting-errors\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #65"
},
{
"vars": {
"query": "What two steps are needed before running a classification evaluation on Claude according to the documentation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#3-run-your-eval\",\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #66"
},
{
"vars": {
"query": "How can you use the content parameter in the messages list to influence Claude's response?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #67"
},
{
"vars": {
"query": "What are two key advantages of prompt engineering over fine-tuning when it comes to model comprehension and general knowledge preservation?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #68"
},
{
"vars": {
"query": "What are the two main steps to get started with making requests to Claude models on Anthropic's Bedrock API?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#install-and-configure-the-aws-cli\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#making-requests\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #69"
},
{
"vars": {
"query": "How can you check which Claude models are available in a specific AWS region using the AWS CLI?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#subscribe-to-anthropic-models\",\"https://docs.claude.com/en/api/claude-on-amazon-bedrock#list-available-models\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #70"
},
{
"vars": {
"query": "What argument can be passed to the voyageai.Client.embed() method or the Voyage HTTP API to specify whether the input text is a query or a document?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-python-package\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#voyage-http-api\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #71"
},
{
"vars": {
"query": "How do the streaming API delta formats differ between tool_use content blocks and text content blocks?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-streaming#input-json-delta\",\"https://docs.claude.com/en/api/messages-streaming#text-delta\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #72"
},
{
"vars": {
"query": "What are the image file size limits when uploading images to Claude using the API versus on claude.ai?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#faq\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #73"
},
{
"vars": {
"query": "What is one key consideration when selecting a Claude model for an enterprise use case that needs low latency?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/intro-to-claude#model-options\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#1-choose-the-right-model\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #74"
},
{
"vars": {
"query": "What embedding model does Anthropic recommend for code retrieval, and how does its performance compare to alternatives according to Voyage AI?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/embeddings#how-to-get-embeddings-with-anthropic\",\"https://docs.claude.com/en/docs/build-with-claude/embeddings#available-voyage-models\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #75"
},
{
"vars": {
"query": "What are two ways the Claude Cookbook can help developers learn to use Anthropic's APIs?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/welcome#develop-with-claude\",\"https://docs.claude.com/en/docs/quickstart#next-steps\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #76"
},
{
"vars": {
"query": "How does the size of the context window impact a language model's ability to utilize retrieval augmented generation (RAG)?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#context-window\",\"https://docs.claude.com/en/docs/resources/glossary#rag-retrieval-augmented-generation\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #77"
},
{
"vars": {
"query": "How can the Evaluation tool in Anthropic's Claude platform help improve prompts and build more robust AI applications?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#creating-test-cases\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #78"
},
{
"vars": {
"query": "Which Claude model has the fastest comparative latency according to the comparison tables?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/models#model-comparison\",\"https://docs.claude.com/en/docs/about-claude/models#legacy-model-comparison\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #79"
},
{
"vars": {
"query": "How can you build up a conversation with multiple turns using the Anthropic Messages API in Python?",
"correct_chunks": "[\"https://docs.claude.com/en/api/client-sdks#python\",\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #80"
},
{
"vars": {
"query": "How can using XML tags to provide a specific role or context help improve Claude's analysis of a legal contract compared to not using a role prompt?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags#examples\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/system-prompts#example-1-legal-contract-analysis\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #81"
},
{
"vars": {
"query": "What are the key differences between how Claude 3 Opus and Claude 3 Sonnet handle missing information when making tool calls?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/tool-use#chain-of-thought\",\"https://docs.claude.com/en/docs/build-with-claude/tool-use#tool-use-examples\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #82"
},
{
"vars": {
"query": "What steps should be taken to ensure a reliable deployment of an automated ticket routing system using Claude into a production environment?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#additional-considerations\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #83"
},
{
"vars": {
"query": "How should you evaluate a model's performance on a ticket routing classifier?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#evaluating-the-performance-of-your-ticket-routing-classifier\",\"https://docs.claude.com/en/docs/about-claude/use-cases/ticket-routing#integrate-claude-into-your-support-workflow\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #84"
},
{
"vars": {
"query": "What two methods does Anthropic recommend for learning how to prompt engineer with Claude before diving into the techniques?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#how-to-prompt-engineer\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#prompt-engineering-tutorial\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #85"
},
{
"vars": {
"query": "What are the key differences between a pretrained large language model and Claude in terms of their training and capabilities?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #86"
},
{
"vars": {
"query": "What are some key advantages of using prompt engineering instead of fine-tuning to adapt a pretrained language model for a specific task or domain?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering#when-to-prompt-engineer\",\"https://docs.claude.com/en/docs/resources/glossary#pretraining\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #87"
},
{
"vars": {
"query": "How can you authenticate with GCP before running requests to access Claude models on Vertex AI?",
"correct_chunks": "[\"https://docs.claude.com/en/api/claude-on-vertex-ai#making-requests\",\"https://docs.claude.com/en/api/claude-on-vertex-ai#accessing-vertex-ai\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #88"
},
{
"vars": {
"query": "What new capabilities and features were introduced by Anthropic on May 10th, 2024 and how do they enable users to create and tailor prompts for specific tasks?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#may-10th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #89"
},
{
"vars": {
"query": "On what date did both the Claude 3.5 Sonnet model and the Artifacts feature in Claude.ai become available?",
"correct_chunks": "[\"https://docs.claude.com/en/release-notes/api#june-20th-2024\",\"https://docs.claude.com/en/release-notes/claude-apps#june-20th-2024\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #90"
},
{
"vars": {
"query": "When putting words in Claude's mouth to shape the response, what header and value can you use in the request to limit Claude's response to a single token?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#basic-request-and-response\",\"https://docs.claude.com/en/api/messages-examples#putting-words-in-claudes-mouth\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #91"
},
{
"vars": {
"query": "What does the temperature parameter do when working with large language models?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#temperature\",\"https://docs.claude.com/en/docs/test-and-evaluate/strengthen-guardrails/reduce-latency#2-optimize-prompt-and-output-length\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #92"
},
{
"vars": {
"query": "What are two ways to specify API parameters when calling the Claude API using Claude for Sheets?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#tips-for-effective-evaluation\",\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#how-to-prefill-claudes-response\",\"https://docs.claude.com/en/docs/build-with-claude/claude-for-sheets#enter-your-first-prompt\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #93"
},
{
"vars": {
"query": "How does prefilling the response with an opening curly brace ({ ) affect Claude's output when extracting structured data from text?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response#example-1-controlling-output-formatting-and-skipping-the-preamble\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #94"
},
{
"vars": {
"query": "What are some helpful resources provided by Anthropic to dive deeper into building with images using Claude?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/build-with-claude/vision#dive-deeper-into-vision\",\"https://docs.claude.com/en/docs/build-with-claude/vision#about-the-prompt-examples\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #95"
},
{
"vars": {
"query": "How do you specify the API key when creating a new Anthropic client in the Python and TypeScript SDK examples?",
"correct_chunks": "[\"https://docs.claude.com/en/api/client-sdks#typescript\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #96"
},
{
"vars": {
"query": "What are two key benefits of using the Anthropic Evaluation tool when developing prompts for an AI classification application?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/about-claude/use-cases/classification#2-develop-your-test-cases\",\"https://docs.claude.com/en/docs/test-and-evaluate/eval-tool#understanding-results\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #97"
},
{
"vars": {
"query": "What are the key differences between a pretrained language model like Claude's underlying model, and the final version of Claude available through Anthropic's API?",
"correct_chunks": "[\"https://docs.claude.com/en/docs/resources/glossary#pretraining\",\"https://docs.claude.com/en/docs/resources/glossary#llm\",\"https://docs.claude.com/en/docs/resources/glossary#fine-tuning\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #98"
},
{
"vars": {
"query": "What is the IPv6 address range used by Anthropic?",
"correct_chunks": "[\"https://docs.claude.com/en/api/ip-addresses#ipv6\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #99"
},
{
"vars": {
"query": "When using the Python SDK to create a message with Claude, what are two ways you can specify your API key?",
"correct_chunks": "[\"https://docs.claude.com/en/api/messages-examples#multiple-conversational-turns\",\"https://docs.claude.com/en/api/client-sdks#python\"]"
},
"assert": [
{
"type": "python",
"value": "file://eval_retrieval.py"
}
],
"options": {},
"description": "Row #100"
}
],
"scenarios": [],
"env": {},
"sharing": true,
"defaultTest": {
"vars": {},
"assert": [],
"options": {}
},
"outputPath": [
"../data/retrieval_results.json"
],
"metadata": {}
},
"shareableUrl": null
}