Enhance AsyncWebCrawler and related configurations

- Introduced new configuration classes: BrowserConfig and CrawlerRunConfig.
  - Refactored AsyncWebCrawler to leverage the new configuration system for cleaner parameter management.
  - Updated AsyncPlaywrightCrawlerStrategy for better flexibility and reduced legacy parameters.
  - Improved error handling with detailed context extraction during exceptions.
  - Enhanced overall maintainability and usability of the web crawler.
This commit is contained in:
UncleCode
2024-12-12 19:35:09 +08:00
parent 5188b7a6a0
commit 0982c639ae
14 changed files with 6373 additions and 2667 deletions

1
.gitignore vendored
View File

@@ -206,6 +206,7 @@ pypi_build.sh
git_issues.py
git_issues.md
.next/
.tests/
.issues/
.docs/

View File

@@ -1,244 +0,0 @@
# Crawl4AI v0.2.77 🕷️🤖
[![GitHub Stars](https://img.shields.io/github/stars/unclecode/crawl4ai?style=social)](https://github.com/unclecode/crawl4ai/stargazers)
[![GitHub Forks](https://img.shields.io/github/forks/unclecode/crawl4ai?style=social)](https://github.com/unclecode/crawl4ai/network/members)
[![GitHub Issues](https://img.shields.io/github/issues/unclecode/crawl4ai)](https://github.com/unclecode/crawl4ai/issues)
[![GitHub Pull Requests](https://img.shields.io/github/issues-pr/unclecode/crawl4ai)](https://github.com/unclecode/crawl4ai/pulls)
[![License](https://img.shields.io/github/license/unclecode/crawl4ai)](https://github.com/unclecode/crawl4ai/blob/main/LICENSE)
Crawl4AI simplifies web crawling and data extraction, making it accessible for large language models (LLMs) and AI applications. 🆓🌐
#### [v0.2.77] - 2024-08-02
Major improvements in functionality, performance, and cross-platform compatibility! 🚀
- 🐳 **Docker enhancements**:
- Significantly improved Dockerfile for easy installation on Linux, Mac, and Windows.
- 🌐 **Official Docker Hub image**:
- Launched our first official image on Docker Hub for streamlined deployment (unclecode/crawl4ai).
- 🔧 **Selenium upgrade**:
- Removed dependency on ChromeDriver, now using Selenium's built-in capabilities for better compatibility.
- 🖼️ **Image description**:
- Implemented ability to generate textual descriptions for extracted images from web pages.
-**Performance boost**:
- Various improvements to enhance overall speed and performance.
## Try it Now!
✨ Play around with this [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1sJPAmeLj5PMrg2VgOwMJ2ubGIcK0cJeX?usp=sharing)
✨ visit our [Documentation Website](https://crawl4ai.com/mkdocs/)
✨ Check [Demo](https://crawl4ai.com/mkdocs/demo)
## Features ✨
- 🆓 Completely free and open-source
- 🤖 LLM-friendly output formats (JSON, cleaned HTML, markdown)
- 🌍 Supports crawling multiple URLs simultaneously
- 🎨 Extracts and returns all media tags (Images, Audio, and Video)
- 🔗 Extracts all external and internal links
- 📚 Extracts metadata from the page
- 🔄 Custom hooks for authentication, headers, and page modifications before crawling
- 🕵️ User-agent customization
- 🖼️ Takes screenshots of the page
- 📜 Executes multiple custom JavaScripts before crawling
- 📚 Various chunking strategies: topic-based, regex, sentence, and more
- 🧠 Advanced extraction strategies: cosine clustering, LLM, and more
- 🎯 CSS selector support
- 📝 Passes instructions/keywords to refine extraction
# Crawl4AI
## 🌟 Shoutout to Contributors of v0.2.77!
A big thank you to the amazing contributors who've made this release possible:
- [@aravindkarnam](https://github.com/aravindkarnam) for the new image description feature
- [@FractalMind](https://github.com/FractalMind) for our official Docker Hub image
- [@ketonkss4](https://github.com/ketonkss4) for helping streamline our Selenium setup
Your contributions are driving Crawl4AI forward! 🚀
## Cool Examples 🚀
### Quick Start
```python
from crawl4ai import WebCrawler
# Create an instance of WebCrawler
crawler = WebCrawler()
# Warm up the crawler (load necessary models)
crawler.warmup()
# Run the crawler on a URL
result = crawler.run(url="https://www.nbcnews.com/business")
# Print the extracted content
print(result.markdown)
```
## How to install 🛠
### Using pip 🐍
```bash
virtualenv venv
source venv/bin/activate
pip install "crawl4ai @ git+https://github.com/unclecode/crawl4ai.git"
```
### Using Docker 🐳
```bash
# For Mac users (M1/M2)
# docker build --platform linux/amd64 -t crawl4ai .
docker build -t crawl4ai .
docker run -d -p 8000:80 crawl4ai
```
### Using Docker Hub 🐳
```bash
docker pull unclecode/crawl4ai:latest
docker run -d -p 8000:80 unclecode/crawl4ai:latest
```
## Speed-First Design 🚀
Perhaps the most important design principle for this library is speed. We need to ensure it can handle many links and resources in parallel as quickly as possible. By combining this speed with fast LLMs like Groq, the results will be truly amazing.
```python
import time
from crawl4ai.web_crawler import WebCrawler
crawler = WebCrawler()
crawler.warmup()
start = time.time()
url = r"https://www.nbcnews.com/business"
result = crawler.run( url, word_count_threshold=10, bypass_cache=True)
end = time.time()
print(f"Time taken: {end - start}")
```
Let's take a look the calculated time for the above code snippet:
```bash
[LOG] 🚀 Crawling done, success: True, time taken: 1.3623387813568115 seconds
[LOG] 🚀 Content extracted, success: True, time taken: 0.05715131759643555 seconds
[LOG] 🚀 Extraction, time taken: 0.05750393867492676 seconds.
Time taken: 1.439958095550537
```
Fetching the content from the page took 1.3623 seconds, and extracting the content took 0.0575 seconds. 🚀
### Extract Structured Data from Web Pages 📊
Crawl all OpenAI models and their fees from the official page.
```python
import os
from crawl4ai import WebCrawler
from crawl4ai.extraction_strategy import LLMExtractionStrategy
from pydantic import BaseModel, Field
class OpenAIModelFee(BaseModel):
model_name: str = Field(..., description="Name of the OpenAI model.")
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
output_fee: str = Field(..., description="Fee for output token ßfor the OpenAI model.")
url = 'https://openai.com/api/pricing/'
crawler = WebCrawler()
crawler.warmup()
result = crawler.run(
url=url,
word_count_threshold=1,
extraction_strategy= LLMExtractionStrategy(
provider= "openai/gpt-4o", api_token = os.getenv('OPENAI_API_KEY'),
schema=OpenAIModelFee.schema(),
extraction_type="schema",
instruction="""From the crawled content, extract all mentioned model names along with their fees for input and output tokens.
Do not miss any models in the entire content. One extracted model JSON format should look like this:
{"model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens"}."""
),
bypass_cache=True,
)
print(result.extracted_content)
```
### Execute JS, Filter Data with CSS Selector, and Clustering
```python
from crawl4ai import WebCrawler
from crawl4ai.chunking_strategy import CosineStrategy
js_code = ["const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"]
crawler = WebCrawler()
crawler.warmup()
result = crawler.run(
url="https://www.nbcnews.com/business",
js=js_code,
css_selector="p",
extraction_strategy=CosineStrategy(semantic_filter="technology")
)
print(result.extracted_content)
```
### Extract Structured Data from Web Pages With Proxy and BaseUrl
```python
from crawl4ai import WebCrawler
from crawl4ai.extraction_strategy import LLMExtractionStrategy
def create_crawler():
crawler = WebCrawler(verbose=True, proxy="http://127.0.0.1:7890")
crawler.warmup()
return crawler
crawler = create_crawler()
crawler.warmup()
result = crawler.run(
url="https://www.nbcnews.com/business",
extraction_strategy=LLMExtractionStrategy(
provider="openai/gpt-4o",
api_token="sk-",
base_url="https://api.openai.com/v1"
)
)
print(result.markdown)
```
## Documentation 📚
For detailed documentation, including installation instructions, advanced features, and API reference, visit our [Documentation Website](https://crawl4ai.com/mkdocs/).
## Contributing 🤝
We welcome contributions from the open-source community. Check out our [contribution guidelines](https://github.com/unclecode/crawl4ai/blob/main/CONTRIBUTING.md) for more information.
## License 📄
Crawl4AI is released under the [Apache 2.0 License](https://github.com/unclecode/crawl4ai/blob/main/LICENSE).
## Contact 📧
For questions, suggestions, or feedback, feel free to reach out:
- GitHub: [unclecode](https://github.com/unclecode)
- Twitter: [@unclecode](https://twitter.com/unclecode)
- Website: [crawl4ai.com](https://crawl4ai.com)
Happy Crawling! 🕸️🚀
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=unclecode/crawl4ai&type=Date)](https://star-history.com/#unclecode/crawl4ai&Date)

4214
a.md Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,11 @@
# __init__.py
from .async_webcrawler import AsyncWebCrawler, CacheMode
from .async_configs import BrowserConfig, CrawlerRunConfig
from .extraction_strategy import ExtractionStrategy, LLMExtractionStrategy, CosineStrategy, JsonCssExtractionStrategy
from .chunking_strategy import ChunkingStrategy, RegexChunking
from .markdown_generation_strategy import DefaultMarkdownGenerator
from .content_filter_strategy import PruningContentFilter, BM25ContentFilter
from .models import CrawlResult
from .__version__ import __version__
@@ -9,6 +13,17 @@ __all__ = [
"AsyncWebCrawler",
"CrawlResult",
"CacheMode",
'BrowserConfig',
'CrawlerRunConfig',
'ExtractionStrategy',
'LLMExtractionStrategy',
'CosineStrategy',
'JsonCssExtractionStrategy',
'ChunkingStrategy',
'RegexChunking',
'DefaultMarkdownGenerator',
'PruningContentFilter',
'BM25ContentFilter',
]
def is_sync_version_installed():

402
crawl4ai/async_configs.py Normal file
View File

@@ -0,0 +1,402 @@
from .config import (
MIN_WORD_THRESHOLD,
IMAGE_DESCRIPTION_MIN_WORD_THRESHOLD,
SCREENSHOT_HEIGHT_TRESHOLD,
PAGE_TIMEOUT
)
from .user_agent_generator import UserAgentGenerator
from .extraction_strategy import ExtractionStrategy
from .chunking_strategy import ChunkingStrategy
class BrowserConfig:
"""
Configuration class for setting up a browser instance and its context in AsyncPlaywrightCrawlerStrategy.
This class centralizes all parameters that affect browser and context creation. Instead of passing
scattered keyword arguments, users can instantiate and modify this configuration object. The crawler
code will then reference these settings to initialize the browser in a consistent, documented manner.
Attributes:
browser_type (str): The type of browser to launch. Supported values: "chromium", "firefox", "webkit".
Default: "chromium".
headless (bool): Whether to run the browser in headless mode (no visible GUI).
Default: True.
use_managed_browser (bool): Launch the browser using a managed approach (e.g., via CDP), allowing
advanced manipulation. Default: False.
use_persistent_context (bool): Use a persistent browser context (like a persistent profile).
Automatically sets use_managed_browser=True. Default: False.
user_data_dir (str or None): Path to a user data directory for persistent sessions. If None, a
temporary directory may be used. Default: None.
chrome_channel (str): The Chrome channel to launch (e.g., "chrome", "msedge"). Only applies if browser_type
is "chromium". Default: "chrome".
proxy (str or None): Proxy server URL (e.g., "http://username:password@proxy:port"). If None, no proxy is used.
Default: None.
proxy_config (dict or None): Detailed proxy configuration, e.g. {"server": "...", "username": "..."}.
If None, no additional proxy config. Default: None.
viewport_width (int): Default viewport width for pages. Default: 1920.
viewport_height (int): Default viewport height for pages. Default: 1080.
verbose (bool): Enable verbose logging.
Default: True.
accept_downloads (bool): Whether to allow file downloads. If True, requires a downloads_path.
Default: False.
downloads_path (str or None): Directory to store downloaded files. If None and accept_downloads is True,
a default path will be created. Default: None.
storage_state (str or dict or None): Path or object describing storage state (cookies, localStorage).
Default: None.
ignore_https_errors (bool): Ignore HTTPS certificate errors. Default: True.
java_script_enabled (bool): Enable JavaScript execution in pages. Default: True.
cookies (list): List of cookies to add to the browser context. Each cookie is a dict with fields like
{"name": "...", "value": "...", "url": "..."}.
Default: [].
headers (dict): Extra HTTP headers to apply to all requests in this context.
Default: {}.
user_agent (str): Custom User-Agent string to use. Default: "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) "
"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36".
user_agent_mode (str or None): Mode for generating the user agent (e.g., "random"). If None, use the provided
user_agent as-is. Default: None.
user_agent_generator_config (dict or None): Configuration for user agent generation if user_agent_mode is set.
Default: None.
text_only (bool): If True, disables images and other rich content for potentially faster load times.
Default: False.
light_mode (bool): Disables certain background features for performance gains. Default: False.
extra_args (list): Additional command-line arguments passed to the browser.
Default: [].
"""
def __init__(
self,
browser_type: str = "chromium",
headless: bool = True,
use_managed_browser: bool = False,
use_persistent_context: bool = False,
user_data_dir: str = None,
chrome_channel: str = "chrome",
proxy: str = None,
proxy_config: dict = None,
viewport_width: int = 1920,
viewport_height: int = 1080,
accept_downloads: bool = False,
downloads_path: str = None,
storage_state=None,
ignore_https_errors: bool = True,
java_script_enabled: bool = True,
sleep_on_close: bool = False,
verbose: bool = True,
cookies: list = None,
headers: dict = None,
user_agent: str = (
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:109.0) AppleWebKit/537.36 "
"(KHTML, like Gecko) Chrome/116.0.5845.187 Safari/604.1 Edg/117.0.2045.47"
),
user_agent_mode: str = None,
user_agent_generator_config: dict = None,
text_only: bool = False,
light_mode: bool = False,
extra_args: list = None,
):
self.browser_type = browser_type
self.headless = headless
self.use_managed_browser = use_managed_browser
self.use_persistent_context = use_persistent_context
self.user_data_dir = user_data_dir
if self.browser_type == "chromium":
self.chrome_channel = "chrome"
elif self.browser_type == "firefox":
self.chrome_channel = "firefox"
elif self.browser_type == "webkit":
self.chrome_channel = "webkit"
else:
self.chrome_channel = chrome_channel or "chrome"
self.proxy = proxy
self.proxy_config = proxy_config
self.viewport_width = viewport_width
self.viewport_height = viewport_height
self.accept_downloads = accept_downloads
self.downloads_path = downloads_path
self.storage_state = storage_state
self.ignore_https_errors = ignore_https_errors
self.java_script_enabled = java_script_enabled
self.cookies = cookies if cookies is not None else []
self.headers = headers if headers is not None else {}
self.user_agent = user_agent
self.user_agent_mode = user_agent_mode
self.user_agent_generator_config = user_agent_generator_config
self.text_only = text_only
self.light_mode = light_mode
self.extra_args = extra_args if extra_args is not None else []
self.sleep_on_close = sleep_on_close
self.verbose = verbose
user_agenr_generator = UserAgentGenerator()
if self.user_agent_mode != "random":
self.user_agent = user_agenr_generator.generate(
**(self.user_agent_generator_config or {})
)
self.browser_hint = user_agenr_generator.generate_client_hints(self.user_agent)
self.headers.setdefault("sec-ch-ua", self.browser_hint)
# If persistent context is requested, ensure managed browser is enabled
if self.use_persistent_context:
self.use_managed_browser = True
@staticmethod
def from_kwargs(kwargs: dict) -> "BrowserConfig":
return BrowserConfig(
browser_type=kwargs.get("browser_type", "chromium"),
headless=kwargs.get("headless", True),
use_managed_browser=kwargs.get("use_managed_browser", False),
use_persistent_context=kwargs.get("use_persistent_context", False),
user_data_dir=kwargs.get("user_data_dir"),
chrome_channel=kwargs.get("chrome_channel", "chrome"),
proxy=kwargs.get("proxy"),
proxy_config=kwargs.get("proxy_config"),
viewport_width=kwargs.get("viewport_width", 1920),
viewport_height=kwargs.get("viewport_height", 1080),
accept_downloads=kwargs.get("accept_downloads", False),
downloads_path=kwargs.get("downloads_path"),
storage_state=kwargs.get("storage_state"),
ignore_https_errors=kwargs.get("ignore_https_errors", True),
java_script_enabled=kwargs.get("java_script_enabled", True),
cookies=kwargs.get("cookies", []),
headers=kwargs.get("headers", {}),
user_agent=kwargs.get("user_agent",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) "
"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36"
),
user_agent_mode=kwargs.get("user_agent_mode"),
user_agent_generator_config=kwargs.get("user_agent_generator_config"),
text_only=kwargs.get("text_only", False),
light_mode=kwargs.get("light_mode", False),
extra_args=kwargs.get("extra_args", [])
)
class CrawlerRunConfig:
"""
Configuration class for controlling how the crawler runs each crawl operation.
This includes parameters for content extraction, page manipulation, waiting conditions,
caching, and other runtime behaviors.
This centralizes parameters that were previously scattered as kwargs to `arun()` and related methods.
By using this class, you have a single place to understand and adjust the crawling options.
Attributes:
word_count_threshold (int): Minimum word count threshold before processing content.
Default: MIN_WORD_THRESHOLD (typically 200).
extraction_strategy (ExtractionStrategy or None): Strategy to extract structured data from crawled pages.
Default: None (NoExtractionStrategy is used if None).
chunking_strategy (ChunkingStrategy): Strategy to chunk content before extraction.
Default: RegexChunking().
content_filter (RelevantContentFilter or None): Optional filter to prune irrelevant content.
Default: None.
cache_mode (CacheMode or None): Defines how caching is handled.
If None, defaults to CacheMode.ENABLED internally.
Default: None.
session_id (str or None): Optional session ID to persist the browser context and the created
page instance. If the ID already exists, the crawler does not
create a new page and uses the current page to preserve the state;
if not, it creates a new page and context then stores it in
memory with the given session ID.
bypass_cache (bool): Legacy parameter, if True acts like CacheMode.BYPASS.
Default: False.
disable_cache (bool): Legacy parameter, if True acts like CacheMode.DISABLED.
Default: False.
no_cache_read (bool): Legacy parameter, if True acts like CacheMode.WRITE_ONLY.
Default: False.
no_cache_write (bool): Legacy parameter, if True acts like CacheMode.READ_ONLY.
Default: False.
css_selector (str or None): CSS selector to extract a specific portion of the page.
Default: None.
screenshot (bool): Whether to take a screenshot after crawling.
Default: False.
pdf (bool): Whether to generate a PDF of the page.
Default: False.
verbose (bool): Enable verbose logging.
Default: True.
only_text (bool): If True, attempt to extract text-only content where applicable.
Default: False.
image_description_min_word_threshold (int): Minimum words for image description extraction.
Default: IMAGE_DESCRIPTION_MIN_WORD_THRESHOLD (e.g., 50).
prettiify (bool): If True, apply `fast_format_html` to produce prettified HTML output.
Default: False.
js_code (str or list of str or None): JavaScript code/snippets to run on the page.
Default: None.
wait_for (str or None): A CSS selector or JS condition to wait for before extracting content.
Default: None.
js_only (bool): If True, indicates subsequent calls are JS-driven updates, not full page loads.
Default: False.
wait_until (str): The condition to wait for when navigating, e.g. "domcontentloaded".
Default: "domcontentloaded".
page_timeout (int): Timeout in ms for page operations like navigation.
Default: 60000 (60 seconds).
ignore_body_visibility (bool): If True, ignore whether the body is visible before proceeding.
Default: True.
wait_for_images (bool): If True, wait for images to load before extracting content.
Default: True.
adjust_viewport_to_content (bool): If True, adjust viewport according to the page content dimensions.
Default: False.
scan_full_page (bool): If True, scroll through the entire page to load all content.
Default: False.
scroll_delay (float): Delay in seconds between scroll steps if scan_full_page is True.
Default: 0.2.
process_iframes (bool): If True, attempts to process and inline iframe content.
Default: False.
remove_overlay_elements (bool): If True, remove overlays/popups before extracting HTML.
Default: False.
delay_before_return_html (float): Delay in seconds before retrieving final HTML.
Default: 0.1.
log_console (bool): If True, log console messages from the page.
Default: False.
simulate_user (bool): If True, simulate user interactions (mouse moves, clicks) for anti-bot measures.
Default: False.
override_navigator (bool): If True, overrides navigator properties for more human-like behavior.
Default: False.
magic (bool): If True, attempts automatic handling of overlays/popups.
Default: False.
screenshot_wait_for (float or None): Additional wait time before taking a screenshot.
Default: None.
screenshot_height_threshold (int): Threshold for page height to decide screenshot strategy.
Default: SCREENSHOT_HEIGHT_TRESHOLD (from config, e.g. 20000).
mean_delay (float): Mean base delay between requests when calling arun_many.
Default: 0.1.
max_range (float): Max random additional delay range for requests in arun_many.
Default: 0.3.
# session_id and semaphore_count might be set at runtime, not needed as defaults here.
"""
def __init__(
self,
word_count_threshold: int = MIN_WORD_THRESHOLD ,
extraction_strategy : ExtractionStrategy=None, # Will default to NoExtractionStrategy if None
chunking_strategy : ChunkingStrategy= None, # Will default to RegexChunking if None
content_filter=None,
cache_mode=None,
session_id: str = None,
bypass_cache: bool = False,
disable_cache: bool = False,
no_cache_read: bool = False,
no_cache_write: bool = False,
css_selector: str = None,
screenshot: bool = False,
pdf: bool = False,
verbose: bool = True,
only_text: bool = False,
image_description_min_word_threshold: int = IMAGE_DESCRIPTION_MIN_WORD_THRESHOLD,
prettiify: bool = False,
js_code=None,
wait_for: str = None,
js_only: bool = False,
wait_until: str = "domcontentloaded",
page_timeout: int = PAGE_TIMEOUT,
ignore_body_visibility: bool = True,
wait_for_images: bool = True,
adjust_viewport_to_content: bool = False,
scan_full_page: bool = False,
scroll_delay: float = 0.2,
process_iframes: bool = False,
remove_overlay_elements: bool = False,
delay_before_return_html: float = 0.1,
log_console: bool = False,
simulate_user: bool = False,
override_navigator: bool = False,
magic: bool = False,
screenshot_wait_for: float = None,
screenshot_height_threshold: int = SCREENSHOT_HEIGHT_TRESHOLD,
mean_delay: float = 0.1,
max_range: float = 0.3,
semaphore_count: int = 5,
):
self.word_count_threshold = word_count_threshold
self.extraction_strategy = extraction_strategy
self.chunking_strategy = chunking_strategy
self.content_filter = content_filter
self.cache_mode = cache_mode
self.session_id = session_id
self.bypass_cache = bypass_cache
self.disable_cache = disable_cache
self.no_cache_read = no_cache_read
self.no_cache_write = no_cache_write
self.css_selector = css_selector
self.screenshot = screenshot
self.pdf = pdf
self.verbose = verbose
self.only_text = only_text
self.image_description_min_word_threshold = image_description_min_word_threshold
self.prettiify = prettiify
self.js_code = js_code
self.wait_for = wait_for
self.js_only = js_only
self.wait_until = wait_until
self.page_timeout = page_timeout
self.ignore_body_visibility = ignore_body_visibility
self.wait_for_images = wait_for_images
self.adjust_viewport_to_content = adjust_viewport_to_content
self.scan_full_page = scan_full_page
self.scroll_delay = scroll_delay
self.process_iframes = process_iframes
self.remove_overlay_elements = remove_overlay_elements
self.delay_before_return_html = delay_before_return_html
self.log_console = log_console
self.simulate_user = simulate_user
self.override_navigator = override_navigator
self.magic = magic
self.screenshot_wait_for = screenshot_wait_for
self.screenshot_height_threshold = screenshot_height_threshold
self.mean_delay = mean_delay
self.max_range = max_range
self.semaphore_count = semaphore_count
# Validate type of extraction strategy and chunking strategy if they are provided
if self.extraction_strategy is not None and not isinstance(self.extraction_strategy, ExtractionStrategy):
raise ValueError("extraction_strategy must be an instance of ExtractionStrategy")
if self.chunking_strategy is not None and not isinstance(self.chunking_strategy, ChunkingStrategy):
raise ValueError("chunking_strategy must be an instance of ChunkingStrategy")
# Set default chunking strategy if None
if self.chunking_strategy is None:
from .chunking_strategy import RegexChunking
self.chunking_strategy = RegexChunking()
@staticmethod
def from_kwargs(kwargs: dict) -> "CrawlerRunConfig":
return CrawlerRunConfig(
word_count_threshold=kwargs.get("word_count_threshold", 200),
extraction_strategy=kwargs.get("extraction_strategy"),
chunking_strategy=kwargs.get("chunking_strategy"),
content_filter=kwargs.get("content_filter"),
cache_mode=kwargs.get("cache_mode"),
session_id=kwargs.get("session_id"),
bypass_cache=kwargs.get("bypass_cache", False),
disable_cache=kwargs.get("disable_cache", False),
no_cache_read=kwargs.get("no_cache_read", False),
no_cache_write=kwargs.get("no_cache_write", False),
css_selector=kwargs.get("css_selector"),
screenshot=kwargs.get("screenshot", False),
pdf=kwargs.get("pdf", False),
verbose=kwargs.get("verbose", True),
only_text=kwargs.get("only_text", False),
image_description_min_word_threshold=kwargs.get("image_description_min_word_threshold", IMAGE_DESCRIPTION_MIN_WORD_THRESHOLD),
prettiify=kwargs.get("prettiify", False),
js_code=kwargs.get("js_code"), # If not provided here, will default inside constructor
wait_for=kwargs.get("wait_for"),
js_only=kwargs.get("js_only", False),
wait_until=kwargs.get("wait_until", "domcontentloaded"),
page_timeout=kwargs.get("page_timeout", 60000),
ignore_body_visibility=kwargs.get("ignore_body_visibility", True),
adjust_viewport_to_content=kwargs.get("adjust_viewport_to_content", False),
scan_full_page=kwargs.get("scan_full_page", False),
scroll_delay=kwargs.get("scroll_delay", 0.2),
process_iframes=kwargs.get("process_iframes", False),
remove_overlay_elements=kwargs.get("remove_overlay_elements", False),
delay_before_return_html=kwargs.get("delay_before_return_html", 0.1),
log_console=kwargs.get("log_console", False),
simulate_user=kwargs.get("simulate_user", False),
override_navigator=kwargs.get("override_navigator", False),
magic=kwargs.get("magic", False),
screenshot_wait_for=kwargs.get("screenshot_wait_for"),
screenshot_height_threshold=kwargs.get("screenshot_height_threshold", 20000),
mean_delay=kwargs.get("mean_delay", 0.1),
max_range=kwargs.get("max_range", 0.3),
semaphore_count=kwargs.get("semaphore_count", 5)
)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,4 @@
import os
import os, sys
from pathlib import Path
import aiosqlite
import asyncio
@@ -13,6 +13,7 @@ import aiofiles
from .config import NEED_MIGRATION
from .version_manager import VersionManager
from .async_logger import AsyncLogger
from .utils import get_error_context, create_box_message
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@@ -97,35 +98,84 @@ class AsyncDatabaseManager:
@asynccontextmanager
async def get_connection(self):
"""Connection pool manager"""
"""Connection pool manager with enhanced error handling"""
if not self._initialized:
# Use an asyncio.Lock to ensure only one initialization occurs
async with self.init_lock:
if not self._initialized:
await self.initialize()
self._initialized = True
try:
await self.initialize()
self._initialized = True
except Exception as e:
import sys
error_context = get_error_context(sys.exc_info())
self.logger.error(
message="Database initialization failed:\n{error}\n\nContext:\n{context}\n\nTraceback:\n{traceback}",
tag="ERROR",
force_verbose=True,
params={
"error": str(e),
"context": error_context["code_context"],
"traceback": error_context["full_traceback"]
}
)
raise
await self.connection_semaphore.acquire()
task_id = id(asyncio.current_task())
try:
async with self.pool_lock:
if task_id not in self.connection_pool:
conn = await aiosqlite.connect(
self.db_path,
timeout=30.0
)
await conn.execute('PRAGMA journal_mode = WAL')
await conn.execute('PRAGMA busy_timeout = 5000')
self.connection_pool[task_id] = conn
try:
conn = await aiosqlite.connect(
self.db_path,
timeout=30.0
)
await conn.execute('PRAGMA journal_mode = WAL')
await conn.execute('PRAGMA busy_timeout = 5000')
# Verify database structure
async with conn.execute("PRAGMA table_info(crawled_data)") as cursor:
columns = await cursor.fetchall()
column_names = [col[1] for col in columns]
expected_columns = {
'url', 'html', 'cleaned_html', 'markdown', 'extracted_content',
'success', 'media', 'links', 'metadata', 'screenshot',
'response_headers', 'downloaded_files'
}
missing_columns = expected_columns - set(column_names)
if missing_columns:
raise ValueError(f"Database missing columns: {missing_columns}")
self.connection_pool[task_id] = conn
except Exception as e:
import sys
error_context = get_error_context(sys.exc_info())
error_message = (
f"Unexpected error in db get_connection at line {error_context['line_no']} "
f"in {error_context['function']} ({error_context['filename']}):\n"
f"Error: {str(e)}\n\n"
f"Code context:\n{error_context['code_context']}"
)
self.logger.error(
message=create_box_message(error_message, type= "error"),
)
raise
yield self.connection_pool[task_id]
except Exception as e:
import sys
error_context = get_error_context(sys.exc_info())
error_message = (
f"Unexpected error in db get_connection at line {error_context['line_no']} "
f"in {error_context['function']} ({error_context['filename']}):\n"
f"Error: {str(e)}\n\n"
f"Code context:\n{error_context['code_context']}"
)
self.logger.error(
message="Connection error: {error}",
tag="ERROR",
force_verbose=True,
params={"error": str(e)}
message=create_box_message(error_message, type= "error"),
)
raise
finally:
@@ -230,7 +280,8 @@ class AsyncDatabaseManager:
'cleaned_html': row_dict['cleaned_html'],
'markdown': row_dict['markdown'],
'extracted_content': row_dict['extracted_content'],
'screenshot': row_dict['screenshot']
'screenshot': row_dict['screenshot'],
'screenshots': row_dict['screenshot'],
}
for field, hash_value in content_fields.items():

File diff suppressed because it is too large Load Diff

View File

@@ -57,4 +57,6 @@ MAX_METRICS_HISTORY = 1000
NEED_MIGRATION = True
URL_LOG_SHORTEN_LENGTH = 30
SHOW_DEPRECATION_WARNINGS = True
SCREENSHOT_HEIGHT_TRESHOLD = 10000
SCREENSHOT_HEIGHT_TRESHOLD = 10000
PAGE_TIMEOUT=60000
DOWNLOAD_PAGE_TIMEOUT=60000

View File

@@ -29,7 +29,7 @@ class InvalidCSSSelectorError(Exception):
def create_box_message(
message: str,
type: str = "info",
width: int = 80,
width: int = 120,
add_newlines: bool = True,
double_line: bool = False
) -> str:
@@ -1223,7 +1223,8 @@ def ensure_content_dirs(base_path: str) -> Dict[str, str]:
'cleaned': 'cleaned_html',
'markdown': 'markdown_content',
'extracted': 'extracted_content',
'screenshots': 'screenshots'
'screenshots': 'screenshots',
'screenshot': 'screenshots'
}
content_paths = {}
@@ -1232,4 +1233,60 @@ def ensure_content_dirs(base_path: str) -> Dict[str, str]:
os.makedirs(path, exist_ok=True)
content_paths[key] = path
return content_paths
return content_paths
def get_error_context(exc_info, context_lines: int = 5):
"""
Extract error context with more reliable line number tracking.
Args:
exc_info: The exception info from sys.exc_info()
context_lines: Number of lines to show before and after the error
Returns:
dict: Error context information
"""
import traceback
import linecache
import os
# Get the full traceback
tb = traceback.extract_tb(exc_info[2])
# Get the last frame (where the error occurred)
last_frame = tb[-1]
filename = last_frame.filename
line_no = last_frame.lineno
func_name = last_frame.name
# Get the source code context using linecache
# This is more reliable than inspect.getsourcelines
context_start = max(1, line_no - context_lines)
context_end = line_no + context_lines + 1
# Build the context lines with line numbers
context_lines = []
for i in range(context_start, context_end):
line = linecache.getline(filename, i)
if line:
# Remove any trailing whitespace/newlines and add the pointer for error line
line = line.rstrip()
pointer = '' if i == line_no else ' '
context_lines.append(f"{i:4d} {pointer} {line}")
# Join the lines with newlines
code_context = '\n'.join(context_lines)
# Get relative path for cleaner output
try:
rel_path = os.path.relpath(filename)
except ValueError:
# Fallback if relpath fails (can happen on Windows with different drives)
rel_path = filename
return {
"filename": rel_path,
"line_no": line_no,
"function": func_name,
"code_context": code_context
}

View File

@@ -0,0 +1,517 @@
import os, sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
os.environ['FIRECRAWL_API_KEY'] = "fc-84b370ccfad44beabc686b38f1769692"
import asyncio
import time
import json
import re
from typing import Dict, List
from bs4 import BeautifulSoup
from pydantic import BaseModel, Field
from crawl4ai import AsyncWebCrawler, CacheMode, BrowserConfig, CrawlerRunConfig
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
from crawl4ai.content_filter_strategy import BM25ContentFilter, PruningContentFilter
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy, LLMExtractionStrategy
__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
print("Crawl4AI: Advanced Web Crawling and Data Extraction")
print("GitHub Repository: https://github.com/unclecode/crawl4ai")
print("Twitter: @unclecode")
print("Website: https://crawl4ai.com")
# Basic Example - Simple Crawl
async def simple_crawl():
print("\n--- Basic Usage ---")
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=crawler_config
)
print(result.markdown[:500])
# JavaScript Execution Example
async def simple_example_with_running_js_code():
print("\n--- Executing JavaScript and Using CSS Selectors ---")
browser_config = BrowserConfig(
headless=True,
java_script_enabled=True
)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
js_code=["const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"],
# wait_for="() => { return Array.from(document.querySelectorAll('article.tease-card')).length > 10; }"
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=crawler_config
)
print(result.markdown[:500])
# CSS Selector Example
async def simple_example_with_css_selector():
print("\n--- Using CSS Selectors ---")
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
css_selector=".wide-tease-item__description"
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=crawler_config
)
print(result.markdown[:500])
# Proxy Example
async def use_proxy():
print("\n--- Using a Proxy ---")
browser_config = BrowserConfig(
headless=True,
proxy="http://your-proxy-url:port"
)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=crawler_config
)
if result.success:
print(result.markdown[:500])
# Screenshot Example
async def capture_and_save_screenshot(url: str, output_path: str):
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
screenshot=True
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url=url,
config=crawler_config
)
if result.success and result.screenshot:
import base64
screenshot_data = base64.b64decode(result.screenshot)
with open(output_path, 'wb') as f:
f.write(screenshot_data)
print(f"Screenshot saved successfully to {output_path}")
else:
print("Failed to capture screenshot")
# LLM Extraction Example
class OpenAIModelFee(BaseModel):
model_name: str = Field(..., description="Name of the OpenAI model.")
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
output_fee: str = Field(..., description="Fee for output token for the OpenAI model.")
async def extract_structured_data_using_llm(provider: str, api_token: str = None, extra_headers: Dict[str, str] = None):
print(f"\n--- Extracting Structured Data with {provider} ---")
if api_token is None and provider != "ollama":
print(f"API token is required for {provider}. Skipping this example.")
return
browser_config = BrowserConfig(headless=True)
extra_args = {
"temperature": 0,
"top_p": 0.9,
"max_tokens": 2000
}
if extra_headers:
extra_args["extra_headers"] = extra_headers
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
word_count_threshold=1,
extraction_strategy=LLMExtractionStrategy(
provider=provider,
api_token=api_token,
schema=OpenAIModelFee.model_json_schema(),
extraction_type="schema",
instruction="""From the crawled content, extract all mentioned model names along with their fees for input and output tokens.
Do not miss any models in the entire content.""",
extra_args=extra_args
)
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://openai.com/api/pricing/",
config=crawler_config
)
print(result.extracted_content)
# CSS Extraction Example
async def extract_structured_data_using_css_extractor():
print("\n--- Using JsonCssExtractionStrategy for Fast Structured Output ---")
schema = {
"name": "KidoCode Courses",
"baseSelector": "section.charge-methodology .w-tab-content > div",
"fields": [
{
"name": "section_title",
"selector": "h3.heading-50",
"type": "text",
},
{
"name": "section_description",
"selector": ".charge-content",
"type": "text",
},
{
"name": "course_name",
"selector": ".text-block-93",
"type": "text",
},
{
"name": "course_description",
"selector": ".course-content-text",
"type": "text",
},
{
"name": "course_icon",
"selector": ".image-92",
"type": "attribute",
"attribute": "src"
}
]
}
browser_config = BrowserConfig(
headless=True,
java_script_enabled=True
)
js_click_tabs = """
(async () => {
const tabs = document.querySelectorAll("section.charge-methodology .tabs-menu-3 > div");
for(let tab of tabs) {
tab.scrollIntoView();
tab.click();
await new Promise(r => setTimeout(r, 500));
}
})();
"""
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
extraction_strategy=JsonCssExtractionStrategy(schema),
js_code=[js_click_tabs]
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.kidocode.com/degrees/technology",
config=crawler_config
)
companies = json.loads(result.extracted_content)
print(f"Successfully extracted {len(companies)} companies")
print(json.dumps(companies[0], indent=2))
# Dynamic Content Examples - Method 1
async def crawl_dynamic_content_pages_method_1():
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
first_commit = ""
async def on_execution_started(page, **kwargs):
nonlocal first_commit
try:
while True:
await page.wait_for_selector("li.Box-sc-g0xbh4-0 h4")
commit = await page.query_selector("li.Box-sc-g0xbh4-0 h4")
commit = await commit.evaluate("(element) => element.textContent")
commit = re.sub(r"\s+", "", commit)
if commit and commit != first_commit:
first_commit = commit
break
await asyncio.sleep(0.5)
except Exception as e:
print(f"Warning: New content didn't appear after JavaScript execution: {e}")
browser_config = BrowserConfig(
headless=False,
java_script_enabled=True
)
async with AsyncWebCrawler(config=browser_config) as crawler:
crawler.crawler_strategy.set_hook("on_execution_started", on_execution_started)
url = "https://github.com/microsoft/TypeScript/commits/main"
session_id = "typescript_commits_session"
all_commits = []
js_next_page = """
const button = document.querySelector('a[data-testid="pagination-next-button"]');
if (button) button.click();
"""
for page in range(3):
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
css_selector="li.Box-sc-g0xbh4-0",
js_code=js_next_page if page > 0 else None,
js_only=page > 0,
session_id=session_id
)
result = await crawler.arun(url=url, config=crawler_config)
assert result.success, f"Failed to crawl page {page + 1}"
soup = BeautifulSoup(result.cleaned_html, "html.parser")
commits = soup.select("li")
all_commits.extend(commits)
print(f"Page {page + 1}: Found {len(commits)} commits")
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
# Dynamic Content Examples - Method 2
async def crawl_dynamic_content_pages_method_2():
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
browser_config = BrowserConfig(
headless=False,
java_script_enabled=True
)
js_next_page_and_wait = """
(async () => {
const getCurrentCommit = () => {
const commits = document.querySelectorAll('li.Box-sc-g0xbh4-0 h4');
return commits.length > 0 ? commits[0].textContent.trim() : null;
};
const initialCommit = getCurrentCommit();
const button = document.querySelector('a[data-testid="pagination-next-button"]');
if (button) button.click();
while (true) {
await new Promise(resolve => setTimeout(resolve, 100));
const newCommit = getCurrentCommit();
if (newCommit && newCommit !== initialCommit) {
break;
}
}
})();
"""
schema = {
"name": "Commit Extractor",
"baseSelector": "li.Box-sc-g0xbh4-0",
"fields": [
{
"name": "title",
"selector": "h4.markdown-title",
"type": "text",
"transform": "strip",
},
],
}
async with AsyncWebCrawler(config=browser_config) as crawler:
url = "https://github.com/microsoft/TypeScript/commits/main"
session_id = "typescript_commits_session"
all_commits = []
extraction_strategy = JsonCssExtractionStrategy(schema)
for page in range(3):
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
css_selector="li.Box-sc-g0xbh4-0",
extraction_strategy=extraction_strategy,
js_code=js_next_page_and_wait if page > 0 else None,
js_only=page > 0,
session_id=session_id
)
result = await crawler.arun(url=url, config=crawler_config)
assert result.success, f"Failed to crawl page {page + 1}"
commits = json.loads(result.extracted_content)
all_commits.extend(commits)
print(f"Page {page + 1}: Found {len(commits)} commits")
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
# Browser Comparison
async def crawl_custom_browser_type():
print("\n--- Browser Comparison ---")
# Firefox
browser_config_firefox = BrowserConfig(
browser_type="firefox",
headless=True
)
start = time.time()
async with AsyncWebCrawler(config=browser_config_firefox) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
)
print("Firefox:", time.time() - start)
print(result.markdown[:500])
# WebKit
browser_config_webkit = BrowserConfig(
browser_type="webkit",
headless=True
)
start = time.time()
async with AsyncWebCrawler(config=browser_config_webkit) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
)
print("WebKit:", time.time() - start)
print(result.markdown[:500])
# Chromium (default)
browser_config_chromium = BrowserConfig(
browser_type="chromium",
headless=True
)
start = time.time()
async with AsyncWebCrawler(config=browser_config_chromium) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
)
print("Chromium:", time.time() - start)
print(result.markdown[:500])
# Anti-Bot and User Simulation
async def crawl_with_user_simulation():
browser_config = BrowserConfig(
headless=True,
user_agent_mode="random",
user_agent_generator_config={
"device_type": "mobile",
"os_type": "android"
}
)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
magic=True,
simulate_user=True,
override_navigator=True
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="YOUR-URL-HERE",
config=crawler_config
)
print(result.markdown)
# Speed Comparison
async def speed_comparison():
print("\n--- Speed Comparison ---")
# Firecrawl comparison
from firecrawl import FirecrawlApp
app = FirecrawlApp(api_key=os.environ['FIRECRAWL_API_KEY'])
start = time.time()
scrape_status = app.scrape_url(
'https://www.nbcnews.com/business',
params={'formats': ['markdown', 'html']}
)
end = time.time()
print("Firecrawl:")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(scrape_status['markdown'])} characters")
print(f"Images found: {scrape_status['markdown'].count('cldnry.s-nbcnews.com')}")
print()
# Crawl4AI comparisons
browser_config = BrowserConfig(headless=True)
# Simple crawl
async with AsyncWebCrawler(config=browser_config) as crawler:
start = time.time()
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
word_count_threshold=0
)
)
end = time.time()
print("Crawl4AI (simple crawl):")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(result.markdown)} characters")
print(f"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}")
print()
# Advanced filtering
start = time.time()
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
word_count_threshold=0,
markdown_generator=DefaultMarkdownGenerator(
content_filter=PruningContentFilter(
threshold=0.48,
threshold_type="fixed",
min_word_threshold=0
)
)
)
)
end = time.time()
print("Crawl4AI (Markdown Plus):")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(result.markdown_v2.raw_markdown)} characters")
print(f"Fit Markdown: {len(result.markdown_v2.fit_markdown)} characters")
print(f"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}")
print()
# Main execution
async def main():
# Basic examples
# await simple_crawl()
# await simple_example_with_running_js_code()
# await simple_example_with_css_selector()
# Advanced examples
# await extract_structured_data_using_css_extractor()
# await extract_structured_data_using_llm("openai/gpt-4o", os.getenv("OPENAI_API_KEY"))
# await crawl_dynamic_content_pages_method_1()
# await crawl_dynamic_content_pages_method_2()
# Browser comparisons
await crawl_custom_browser_type()
# Performance testing
# await speed_comparison()
# Screenshot example
await capture_and_save_screenshot(
"https://www.example.com",
os.path.join(__location__, "tmp/example_screenshot.jpg")
)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -1,7 +1,7 @@
# Crawl4AI Cache System and Migration Guide
## Overview
Starting from version X.X.X, Crawl4AI introduces a new caching system that replaces the old boolean flags with a more intuitive `CacheMode` enum. This change simplifies cache control and makes the behavior more predictable.
Starting from version 0.5.0, Crawl4AI introduces a new caching system that replaces the old boolean flags with a more intuitive `CacheMode` enum. This change simplifies cache control and makes the behavior more predictable.
## Old vs New Approach

View File

@@ -0,0 +1,231 @@
import os, sys
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(parent_dir)
__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
import asyncio
from crawl4ai import AsyncWebCrawler, CacheMode
from crawl4ai.async_configs import BrowserConfig, CrawlerRunConfig
from crawl4ai.content_filter_strategy import PruningContentFilter
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
from crawl4ai.chunking_strategy import RegexChunking
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
# Category 1: Browser Configuration Tests
async def test_browser_config_object():
"""Test the new BrowserConfig object with various browser settings"""
browser_config = BrowserConfig(
browser_type="chromium",
headless=False,
viewport_width=1920,
viewport_height=1080,
use_managed_browser=True,
user_agent_mode="random",
user_agent_generator_config={"device_type": "desktop", "os_type": "windows"}
)
async with AsyncWebCrawler(config=browser_config, verbose=True) as crawler:
result = await crawler.arun('https://example.com', cache_mode=CacheMode.BYPASS)
assert result.success, "Browser config crawl failed"
assert len(result.html) > 0, "No HTML content retrieved"
async def test_browser_performance_config():
"""Test browser configurations focused on performance"""
browser_config = BrowserConfig(
text_only=True,
light_mode=True,
extra_args=['--disable-gpu', '--disable-software-rasterizer'],
ignore_https_errors=True,
java_script_enabled=False
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun('https://example.com')
assert result.success, "Performance optimized crawl failed"
assert result.status_code == 200, "Unexpected status code"
# Category 2: Content Processing Tests
async def test_content_extraction_config():
"""Test content extraction with various strategies"""
crawler_config = CrawlerRunConfig(
word_count_threshold=300,
extraction_strategy=JsonCssExtractionStrategy(
schema={
"name": "article",
"baseSelector": "div",
"fields": [{
"name": "title",
"selector": "h1",
"type": "text"
}]
}
),
chunking_strategy=RegexChunking(),
content_filter=PruningContentFilter()
)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
'https://example.com/article',
config=crawler_config
)
assert result.extracted_content is not None, "Content extraction failed"
assert 'title' in result.extracted_content, "Missing expected content field"
# Category 3: Cache and Session Management Tests
async def test_cache_and_session_management():
"""Test different cache modes and session handling"""
browser_config = BrowserConfig(use_persistent_context=True)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.WRITE_ONLY,
process_iframes=True,
remove_overlay_elements=True
)
async with AsyncWebCrawler(config=browser_config) as crawler:
# First request - should write to cache
result1 = await crawler.arun(
'https://example.com',
config=crawler_config
)
# Second request - should use fresh fetch due to WRITE_ONLY mode
result2 = await crawler.arun(
'https://example.com',
config=crawler_config
)
assert result1.success and result2.success, "Cache mode crawl failed"
assert result1.html == result2.html, "Inconsistent results between requests"
# Category 4: Media Handling Tests
async def test_media_handling_config():
"""Test configurations related to media handling"""
# Get the base path for home directroy ~/.crawl4ai/downloads, make sure it exists
os.makedirs(os.path.expanduser("~/.crawl4ai/downloads"), exist_ok=True)
browser_config = BrowserConfig(
viewport_width=1920,
viewport_height=1080,
accept_downloads=True,
downloads_path= os.path.expanduser("~/.crawl4ai/downloads")
)
crawler_config = CrawlerRunConfig(
screenshot=True,
pdf=True,
adjust_viewport_to_content=True,
wait_for_images=True,
screenshot_height_threshold=20000
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
'https://example.com',
config=crawler_config
)
assert result.screenshot is not None, "Screenshot capture failed"
assert result.pdf is not None, "PDF generation failed"
# Category 5: Anti-Bot and Site Interaction Tests
async def test_antibot_config():
"""Test configurations for handling anti-bot measures"""
crawler_config = CrawlerRunConfig(
simulate_user=True,
override_navigator=True,
magic=True,
wait_for="js:()=>document.querySelector('body')",
delay_before_return_html=1.0,
log_console=True,
cache_mode=CacheMode.BYPASS
)
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
'https://example.com',
config=crawler_config
)
assert result.success, "Anti-bot measure handling failed"
# Category 6: Parallel Processing Tests
async def test_parallel_processing():
"""Test parallel processing capabilities"""
crawler_config = CrawlerRunConfig(
mean_delay=0.5,
max_range=1.0,
semaphore_count=5
)
urls = [
'https://example.com/1',
'https://example.com/2',
'https://example.com/3'
]
async with AsyncWebCrawler() as crawler:
results = await crawler.arun_many(
urls,
config=crawler_config
)
assert len(results) == len(urls), "Not all URLs were processed"
assert all(r.success for r in results), "Some parallel requests failed"
# Category 7: Backwards Compatibility Tests
async def test_legacy_parameter_support():
"""Test that legacy parameters still work"""
async with AsyncWebCrawler(
headless=True,
browser_type="chromium",
viewport_width=1024,
viewport_height=768
) as crawler:
result = await crawler.arun(
'https://example.com',
screenshot=True,
word_count_threshold=200,
bypass_cache=True,
css_selector=".main-content"
)
assert result.success, "Legacy parameter support failed"
# Category 8: Mixed Configuration Tests
async def test_mixed_config_usage():
"""Test mixing new config objects with legacy parameters"""
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(screenshot=True)
async with AsyncWebCrawler(
config=browser_config,
verbose=True # legacy parameter
) as crawler:
result = await crawler.arun(
'https://example.com',
config=crawler_config,
cache_mode=CacheMode.BYPASS, # legacy parameter
css_selector="body" # legacy parameter
)
assert result.success, "Mixed configuration usage failed"
if __name__ == "__main__":
async def run_tests():
test_functions = [
test_browser_config_object,
# test_browser_performance_config,
# test_content_extraction_config,
# test_cache_and_session_management,
# test_media_handling_config,
# test_antibot_config,
# test_parallel_processing,
# test_legacy_parameter_support,
# test_mixed_config_usage
]
for test in test_functions:
print(f"\nRunning {test.__name__}...")
try:
await test()
print(f"{test.__name__} passed")
except AssertionError as e:
print(f"{test.__name__} failed: {str(e)}")
except Exception as e:
print(f"{test.__name__} error: {str(e)}")
asyncio.run(run_tests())