mirror of
https://github.com/charmbracelet/crush.git
synced 2025-08-02 05:20:46 +03:00
* feat: debug logs request response details closes #399 * fix: lint * refactor: improvements * fix: improvements * fix: test * fix: centralize body parsing * fix: compatct
565 lines
17 KiB
Go
565 lines
17 KiB
Go
package provider
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"log/slog"
|
|
"strings"
|
|
"time"
|
|
|
|
"github.com/charmbracelet/catwalk/pkg/catwalk"
|
|
"github.com/charmbracelet/crush/internal/config"
|
|
"github.com/charmbracelet/crush/internal/llm/tools"
|
|
"github.com/charmbracelet/crush/internal/log"
|
|
"github.com/charmbracelet/crush/internal/message"
|
|
"github.com/openai/openai-go"
|
|
"github.com/openai/openai-go/option"
|
|
"github.com/openai/openai-go/packages/param"
|
|
"github.com/openai/openai-go/shared"
|
|
)
|
|
|
|
type openaiClient struct {
|
|
providerOptions providerClientOptions
|
|
client openai.Client
|
|
}
|
|
|
|
type OpenAIClient ProviderClient
|
|
|
|
func newOpenAIClient(opts providerClientOptions) OpenAIClient {
|
|
return &openaiClient{
|
|
providerOptions: opts,
|
|
client: createOpenAIClient(opts),
|
|
}
|
|
}
|
|
|
|
func createOpenAIClient(opts providerClientOptions) openai.Client {
|
|
openaiClientOptions := []option.RequestOption{}
|
|
if opts.apiKey != "" {
|
|
openaiClientOptions = append(openaiClientOptions, option.WithAPIKey(opts.apiKey))
|
|
}
|
|
if opts.baseURL != "" {
|
|
resolvedBaseURL, err := config.Get().Resolve(opts.baseURL)
|
|
if err == nil {
|
|
openaiClientOptions = append(openaiClientOptions, option.WithBaseURL(resolvedBaseURL))
|
|
}
|
|
}
|
|
|
|
if config.Get().Options.Debug {
|
|
httpClient := log.NewHTTPClient()
|
|
openaiClientOptions = append(openaiClientOptions, option.WithHTTPClient(httpClient))
|
|
}
|
|
|
|
for key, value := range opts.extraHeaders {
|
|
openaiClientOptions = append(openaiClientOptions, option.WithHeader(key, value))
|
|
}
|
|
|
|
for extraKey, extraValue := range opts.extraBody {
|
|
openaiClientOptions = append(openaiClientOptions, option.WithJSONSet(extraKey, extraValue))
|
|
}
|
|
|
|
return openai.NewClient(openaiClientOptions...)
|
|
}
|
|
|
|
func (o *openaiClient) convertMessages(messages []message.Message) (openaiMessages []openai.ChatCompletionMessageParamUnion) {
|
|
isAnthropicModel := o.providerOptions.config.ID == string(catwalk.InferenceProviderOpenRouter) && strings.HasPrefix(o.Model().ID, "anthropic/")
|
|
// Add system message first
|
|
systemMessage := o.providerOptions.systemMessage
|
|
if o.providerOptions.systemPromptPrefix != "" {
|
|
systemMessage = o.providerOptions.systemPromptPrefix + "\n" + systemMessage
|
|
}
|
|
|
|
systemTextBlock := openai.ChatCompletionContentPartTextParam{Text: systemMessage}
|
|
if isAnthropicModel && !o.providerOptions.disableCache {
|
|
systemTextBlock.SetExtraFields(
|
|
map[string]any{
|
|
"cache_control": map[string]string{
|
|
"type": "ephemeral",
|
|
},
|
|
},
|
|
)
|
|
}
|
|
var content []openai.ChatCompletionContentPartTextParam
|
|
content = append(content, systemTextBlock)
|
|
system := openai.SystemMessage(content)
|
|
openaiMessages = append(openaiMessages, system)
|
|
|
|
for i, msg := range messages {
|
|
cache := false
|
|
if i > len(messages)-3 {
|
|
cache = true
|
|
}
|
|
switch msg.Role {
|
|
case message.User:
|
|
var content []openai.ChatCompletionContentPartUnionParam
|
|
textBlock := openai.ChatCompletionContentPartTextParam{Text: msg.Content().String()}
|
|
content = append(content, openai.ChatCompletionContentPartUnionParam{OfText: &textBlock})
|
|
for _, binaryContent := range msg.BinaryContent() {
|
|
imageURL := openai.ChatCompletionContentPartImageImageURLParam{URL: binaryContent.String(catwalk.InferenceProviderOpenAI)}
|
|
imageBlock := openai.ChatCompletionContentPartImageParam{ImageURL: imageURL}
|
|
|
|
content = append(content, openai.ChatCompletionContentPartUnionParam{OfImageURL: &imageBlock})
|
|
}
|
|
if cache && !o.providerOptions.disableCache && isAnthropicModel {
|
|
textBlock.SetExtraFields(map[string]any{
|
|
"cache_control": map[string]string{
|
|
"type": "ephemeral",
|
|
},
|
|
})
|
|
}
|
|
|
|
openaiMessages = append(openaiMessages, openai.UserMessage(content))
|
|
|
|
case message.Assistant:
|
|
assistantMsg := openai.ChatCompletionAssistantMessageParam{
|
|
Role: "assistant",
|
|
}
|
|
|
|
hasContent := false
|
|
if msg.Content().String() != "" {
|
|
hasContent = true
|
|
textBlock := openai.ChatCompletionContentPartTextParam{Text: msg.Content().String()}
|
|
if cache && !o.providerOptions.disableCache && isAnthropicModel {
|
|
textBlock.SetExtraFields(map[string]any{
|
|
"cache_control": map[string]string{
|
|
"type": "ephemeral",
|
|
},
|
|
})
|
|
}
|
|
assistantMsg.Content = openai.ChatCompletionAssistantMessageParamContentUnion{
|
|
OfArrayOfContentParts: []openai.ChatCompletionAssistantMessageParamContentArrayOfContentPartUnion{
|
|
{
|
|
OfText: &textBlock,
|
|
},
|
|
},
|
|
}
|
|
}
|
|
|
|
if len(msg.ToolCalls()) > 0 {
|
|
hasContent = true
|
|
assistantMsg.Content = openai.ChatCompletionAssistantMessageParamContentUnion{
|
|
OfString: param.NewOpt(msg.Content().String()),
|
|
}
|
|
assistantMsg.ToolCalls = make([]openai.ChatCompletionMessageToolCallParam, len(msg.ToolCalls()))
|
|
for i, call := range msg.ToolCalls() {
|
|
assistantMsg.ToolCalls[i] = openai.ChatCompletionMessageToolCallParam{
|
|
ID: call.ID,
|
|
Type: "function",
|
|
Function: openai.ChatCompletionMessageToolCallFunctionParam{
|
|
Name: call.Name,
|
|
Arguments: call.Input,
|
|
},
|
|
}
|
|
}
|
|
}
|
|
if !hasContent {
|
|
slog.Warn("There is a message without content, investigate, this should not happen")
|
|
continue
|
|
}
|
|
|
|
openaiMessages = append(openaiMessages, openai.ChatCompletionMessageParamUnion{
|
|
OfAssistant: &assistantMsg,
|
|
})
|
|
|
|
case message.Tool:
|
|
for _, result := range msg.ToolResults() {
|
|
openaiMessages = append(openaiMessages,
|
|
openai.ToolMessage(result.Content, result.ToolCallID),
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (o *openaiClient) convertTools(tools []tools.BaseTool) []openai.ChatCompletionToolParam {
|
|
openaiTools := make([]openai.ChatCompletionToolParam, len(tools))
|
|
|
|
for i, tool := range tools {
|
|
info := tool.Info()
|
|
openaiTools[i] = openai.ChatCompletionToolParam{
|
|
Function: openai.FunctionDefinitionParam{
|
|
Name: info.Name,
|
|
Description: openai.String(info.Description),
|
|
Parameters: openai.FunctionParameters{
|
|
"type": "object",
|
|
"properties": info.Parameters,
|
|
"required": info.Required,
|
|
},
|
|
},
|
|
}
|
|
}
|
|
|
|
return openaiTools
|
|
}
|
|
|
|
func (o *openaiClient) finishReason(reason string) message.FinishReason {
|
|
switch reason {
|
|
case "stop":
|
|
return message.FinishReasonEndTurn
|
|
case "length":
|
|
return message.FinishReasonMaxTokens
|
|
case "tool_calls":
|
|
return message.FinishReasonToolUse
|
|
default:
|
|
return message.FinishReasonUnknown
|
|
}
|
|
}
|
|
|
|
func (o *openaiClient) preparedParams(messages []openai.ChatCompletionMessageParamUnion, tools []openai.ChatCompletionToolParam) openai.ChatCompletionNewParams {
|
|
model := o.providerOptions.model(o.providerOptions.modelType)
|
|
cfg := config.Get()
|
|
|
|
modelConfig := cfg.Models[config.SelectedModelTypeLarge]
|
|
if o.providerOptions.modelType == config.SelectedModelTypeSmall {
|
|
modelConfig = cfg.Models[config.SelectedModelTypeSmall]
|
|
}
|
|
|
|
reasoningEffort := modelConfig.ReasoningEffort
|
|
|
|
params := openai.ChatCompletionNewParams{
|
|
Model: openai.ChatModel(model.ID),
|
|
Messages: messages,
|
|
Tools: tools,
|
|
}
|
|
|
|
maxTokens := model.DefaultMaxTokens
|
|
if modelConfig.MaxTokens > 0 {
|
|
maxTokens = modelConfig.MaxTokens
|
|
}
|
|
|
|
// Override max tokens if set in provider options
|
|
if o.providerOptions.maxTokens > 0 {
|
|
maxTokens = o.providerOptions.maxTokens
|
|
}
|
|
if model.CanReason {
|
|
params.MaxCompletionTokens = openai.Int(maxTokens)
|
|
switch reasoningEffort {
|
|
case "low":
|
|
params.ReasoningEffort = shared.ReasoningEffortLow
|
|
case "medium":
|
|
params.ReasoningEffort = shared.ReasoningEffortMedium
|
|
case "high":
|
|
params.ReasoningEffort = shared.ReasoningEffortHigh
|
|
default:
|
|
params.ReasoningEffort = shared.ReasoningEffort(reasoningEffort)
|
|
}
|
|
} else {
|
|
params.MaxTokens = openai.Int(maxTokens)
|
|
}
|
|
|
|
return params
|
|
}
|
|
|
|
func (o *openaiClient) send(ctx context.Context, messages []message.Message, tools []tools.BaseTool) (response *ProviderResponse, err error) {
|
|
params := o.preparedParams(o.convertMessages(messages), o.convertTools(tools))
|
|
attempts := 0
|
|
for {
|
|
attempts++
|
|
openaiResponse, err := o.client.Chat.Completions.New(
|
|
ctx,
|
|
params,
|
|
)
|
|
// If there is an error we are going to see if we can retry the call
|
|
if err != nil {
|
|
retry, after, retryErr := o.shouldRetry(attempts, err)
|
|
if retryErr != nil {
|
|
return nil, retryErr
|
|
}
|
|
if retry {
|
|
slog.Warn("Retrying due to rate limit", "attempt", attempts, "max_retries", maxRetries)
|
|
select {
|
|
case <-ctx.Done():
|
|
return nil, ctx.Err()
|
|
case <-time.After(time.Duration(after) * time.Millisecond):
|
|
continue
|
|
}
|
|
}
|
|
return nil, retryErr
|
|
}
|
|
|
|
if len(openaiResponse.Choices) == 0 {
|
|
return nil, fmt.Errorf("received empty response from OpenAI API - check endpoint configuration")
|
|
}
|
|
|
|
content := ""
|
|
if openaiResponse.Choices[0].Message.Content != "" {
|
|
content = openaiResponse.Choices[0].Message.Content
|
|
}
|
|
|
|
toolCalls := o.toolCalls(*openaiResponse)
|
|
finishReason := o.finishReason(string(openaiResponse.Choices[0].FinishReason))
|
|
|
|
if len(toolCalls) > 0 {
|
|
finishReason = message.FinishReasonToolUse
|
|
}
|
|
|
|
return &ProviderResponse{
|
|
Content: content,
|
|
ToolCalls: toolCalls,
|
|
Usage: o.usage(*openaiResponse),
|
|
FinishReason: finishReason,
|
|
}, nil
|
|
}
|
|
}
|
|
|
|
func (o *openaiClient) stream(ctx context.Context, messages []message.Message, tools []tools.BaseTool) <-chan ProviderEvent {
|
|
params := o.preparedParams(o.convertMessages(messages), o.convertTools(tools))
|
|
params.StreamOptions = openai.ChatCompletionStreamOptionsParam{
|
|
IncludeUsage: openai.Bool(true),
|
|
}
|
|
|
|
attempts := 0
|
|
eventChan := make(chan ProviderEvent)
|
|
|
|
go func() {
|
|
for {
|
|
attempts++
|
|
// Kujtim: fixes an issue with anthropig models on openrouter
|
|
if len(params.Tools) == 0 {
|
|
params.Tools = nil
|
|
}
|
|
openaiStream := o.client.Chat.Completions.NewStreaming(
|
|
ctx,
|
|
params,
|
|
)
|
|
|
|
acc := openai.ChatCompletionAccumulator{}
|
|
currentContent := ""
|
|
toolCalls := make([]message.ToolCall, 0)
|
|
|
|
var currentToolCallID string
|
|
var currentToolCall openai.ChatCompletionMessageToolCall
|
|
var msgToolCalls []openai.ChatCompletionMessageToolCall
|
|
currentToolIndex := 0
|
|
for openaiStream.Next() {
|
|
chunk := openaiStream.Current()
|
|
// Kujtim: this is an issue with openrouter qwen, its sending -1 for the tool index
|
|
if len(chunk.Choices) > 0 && len(chunk.Choices[0].Delta.ToolCalls) > 0 && chunk.Choices[0].Delta.ToolCalls[0].Index == -1 {
|
|
chunk.Choices[0].Delta.ToolCalls[0].Index = int64(currentToolIndex)
|
|
currentToolIndex++
|
|
}
|
|
acc.AddChunk(chunk)
|
|
// This fixes multiple tool calls for some providers
|
|
for _, choice := range chunk.Choices {
|
|
if choice.Delta.Content != "" {
|
|
eventChan <- ProviderEvent{
|
|
Type: EventContentDelta,
|
|
Content: choice.Delta.Content,
|
|
}
|
|
currentContent += choice.Delta.Content
|
|
} else if len(choice.Delta.ToolCalls) > 0 {
|
|
toolCall := choice.Delta.ToolCalls[0]
|
|
// Detect tool use start
|
|
if currentToolCallID == "" {
|
|
if toolCall.ID != "" {
|
|
currentToolCallID = toolCall.ID
|
|
eventChan <- ProviderEvent{
|
|
Type: EventToolUseStart,
|
|
ToolCall: &message.ToolCall{
|
|
ID: toolCall.ID,
|
|
Name: toolCall.Function.Name,
|
|
Finished: false,
|
|
},
|
|
}
|
|
currentToolCall = openai.ChatCompletionMessageToolCall{
|
|
ID: toolCall.ID,
|
|
Type: "function",
|
|
Function: openai.ChatCompletionMessageToolCallFunction{
|
|
Name: toolCall.Function.Name,
|
|
Arguments: toolCall.Function.Arguments,
|
|
},
|
|
}
|
|
}
|
|
} else {
|
|
// Delta tool use
|
|
if toolCall.ID == "" || toolCall.ID == currentToolCallID {
|
|
currentToolCall.Function.Arguments += toolCall.Function.Arguments
|
|
} else {
|
|
// Detect new tool use
|
|
if toolCall.ID != currentToolCallID {
|
|
msgToolCalls = append(msgToolCalls, currentToolCall)
|
|
currentToolCallID = toolCall.ID
|
|
eventChan <- ProviderEvent{
|
|
Type: EventToolUseStart,
|
|
ToolCall: &message.ToolCall{
|
|
ID: toolCall.ID,
|
|
Name: toolCall.Function.Name,
|
|
Finished: false,
|
|
},
|
|
}
|
|
currentToolCall = openai.ChatCompletionMessageToolCall{
|
|
ID: toolCall.ID,
|
|
Type: "function",
|
|
Function: openai.ChatCompletionMessageToolCallFunction{
|
|
Name: toolCall.Function.Name,
|
|
Arguments: toolCall.Function.Arguments,
|
|
},
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Kujtim: some models send finish stop even for tool calls
|
|
if choice.FinishReason == "tool_calls" || (choice.FinishReason == "stop" && currentToolCallID != "") {
|
|
msgToolCalls = append(msgToolCalls, currentToolCall)
|
|
if len(acc.Choices) > 0 {
|
|
acc.Choices[0].Message.ToolCalls = msgToolCalls
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
err := openaiStream.Err()
|
|
if err == nil || errors.Is(err, io.EOF) {
|
|
if len(acc.Choices) == 0 {
|
|
eventChan <- ProviderEvent{
|
|
Type: EventError,
|
|
Error: fmt.Errorf("received empty streaming response from OpenAI API - check endpoint configuration"),
|
|
}
|
|
return
|
|
}
|
|
|
|
resultFinishReason := acc.Choices[0].FinishReason
|
|
if resultFinishReason == "" {
|
|
// If the finish reason is empty, we assume it was a successful completion
|
|
// INFO: this is happening for openrouter for some reason
|
|
resultFinishReason = "stop"
|
|
}
|
|
// Stream completed successfully
|
|
finishReason := o.finishReason(resultFinishReason)
|
|
if len(acc.Choices[0].Message.ToolCalls) > 0 {
|
|
toolCalls = append(toolCalls, o.toolCalls(acc.ChatCompletion)...)
|
|
}
|
|
if len(toolCalls) > 0 {
|
|
finishReason = message.FinishReasonToolUse
|
|
}
|
|
|
|
eventChan <- ProviderEvent{
|
|
Type: EventComplete,
|
|
Response: &ProviderResponse{
|
|
Content: currentContent,
|
|
ToolCalls: toolCalls,
|
|
Usage: o.usage(acc.ChatCompletion),
|
|
FinishReason: finishReason,
|
|
},
|
|
}
|
|
close(eventChan)
|
|
return
|
|
}
|
|
|
|
// If there is an error we are going to see if we can retry the call
|
|
retry, after, retryErr := o.shouldRetry(attempts, err)
|
|
if retryErr != nil {
|
|
eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
|
|
close(eventChan)
|
|
return
|
|
}
|
|
if retry {
|
|
slog.Warn("Retrying due to rate limit", "attempt", attempts, "max_retries", maxRetries)
|
|
select {
|
|
case <-ctx.Done():
|
|
// context cancelled
|
|
if ctx.Err() == nil {
|
|
eventChan <- ProviderEvent{Type: EventError, Error: ctx.Err()}
|
|
}
|
|
close(eventChan)
|
|
return
|
|
case <-time.After(time.Duration(after) * time.Millisecond):
|
|
continue
|
|
}
|
|
}
|
|
eventChan <- ProviderEvent{Type: EventError, Error: retryErr}
|
|
close(eventChan)
|
|
return
|
|
}
|
|
}()
|
|
|
|
return eventChan
|
|
}
|
|
|
|
func (o *openaiClient) shouldRetry(attempts int, err error) (bool, int64, error) {
|
|
if attempts > maxRetries {
|
|
return false, 0, fmt.Errorf("maximum retry attempts reached for rate limit: %d retries", maxRetries)
|
|
}
|
|
if errors.Is(err, context.Canceled) || errors.Is(err, context.DeadlineExceeded) {
|
|
return false, 0, err
|
|
}
|
|
var apiErr *openai.Error
|
|
retryMs := 0
|
|
retryAfterValues := []string{}
|
|
if errors.As(err, &apiErr) {
|
|
// Check for token expiration (401 Unauthorized)
|
|
if apiErr.StatusCode == 401 {
|
|
o.providerOptions.apiKey, err = config.Get().Resolve(o.providerOptions.config.APIKey)
|
|
if err != nil {
|
|
return false, 0, fmt.Errorf("failed to resolve API key: %w", err)
|
|
}
|
|
o.client = createOpenAIClient(o.providerOptions)
|
|
return true, 0, nil
|
|
}
|
|
|
|
if apiErr.StatusCode != 429 && apiErr.StatusCode != 500 {
|
|
return false, 0, err
|
|
}
|
|
|
|
retryAfterValues = apiErr.Response.Header.Values("Retry-After")
|
|
}
|
|
|
|
if apiErr != nil {
|
|
slog.Warn("OpenAI API error", "status_code", apiErr.StatusCode, "message", apiErr.Message, "type", apiErr.Type)
|
|
if len(retryAfterValues) > 0 {
|
|
slog.Warn("Retry-After header", "values", retryAfterValues)
|
|
}
|
|
} else {
|
|
slog.Error("OpenAI API error", "error", err.Error(), "attempt", attempts, "max_retries", maxRetries)
|
|
}
|
|
|
|
backoffMs := 2000 * (1 << (attempts - 1))
|
|
jitterMs := int(float64(backoffMs) * 0.2)
|
|
retryMs = backoffMs + jitterMs
|
|
if len(retryAfterValues) > 0 {
|
|
if _, err := fmt.Sscanf(retryAfterValues[0], "%d", &retryMs); err == nil {
|
|
retryMs = retryMs * 1000
|
|
}
|
|
}
|
|
return true, int64(retryMs), nil
|
|
}
|
|
|
|
func (o *openaiClient) toolCalls(completion openai.ChatCompletion) []message.ToolCall {
|
|
var toolCalls []message.ToolCall
|
|
|
|
if len(completion.Choices) > 0 && len(completion.Choices[0].Message.ToolCalls) > 0 {
|
|
for _, call := range completion.Choices[0].Message.ToolCalls {
|
|
toolCall := message.ToolCall{
|
|
ID: call.ID,
|
|
Name: call.Function.Name,
|
|
Input: call.Function.Arguments,
|
|
Type: "function",
|
|
Finished: true,
|
|
}
|
|
toolCalls = append(toolCalls, toolCall)
|
|
}
|
|
}
|
|
|
|
return toolCalls
|
|
}
|
|
|
|
func (o *openaiClient) usage(completion openai.ChatCompletion) TokenUsage {
|
|
cachedTokens := completion.Usage.PromptTokensDetails.CachedTokens
|
|
inputTokens := completion.Usage.PromptTokens - cachedTokens
|
|
|
|
return TokenUsage{
|
|
InputTokens: inputTokens,
|
|
OutputTokens: completion.Usage.CompletionTokens,
|
|
CacheCreationTokens: 0, // OpenAI doesn't provide this directly
|
|
CacheReadTokens: cachedTokens,
|
|
}
|
|
}
|
|
|
|
func (o *openaiClient) Model() catwalk.Model {
|
|
return o.providerOptions.model(o.providerOptions.modelType)
|
|
}
|