Files
earthengine-py-notebooks/GetStarted/09_a_complete_example.ipynb
2020-12-06 08:43:45 -05:00

166 lines
6.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table class=\"ee-notebook-buttons\" align=\"left\">\n",
" <td><a target=\"_blank\" href=\"https://github.com/giswqs/earthengine-py-notebooks/tree/master/GetStarted/09_a_complete_example.ipynb\"><img width=32px src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /> View source on GitHub</a></td>\n",
" <td><a target=\"_blank\" href=\"https://nbviewer.jupyter.org/github/giswqs/earthengine-py-notebooks/blob/master/GetStarted/09_a_complete_example.ipynb\"><img width=26px src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/883px-Jupyter_logo.svg.png\" />Notebook Viewer</a></td>\n",
" <td><a target=\"_blank\" href=\"https://colab.research.google.com/github/giswqs/earthengine-py-notebooks/blob/master/GetStarted/09_a_complete_example.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /> Run in Google Colab</a></td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install Earth Engine API and geemap\n",
"Install the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://geemap.org). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.\n",
"The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemap#dependencies), including earthengine-api, folium, and ipyleaflet."
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"# Installs geemap package\n",
"import subprocess\n",
"\n",
"try:\n",
" import geemap\n",
"except ImportError:\n",
" print('Installing geemap ...')\n",
" subprocess.check_call([\"python\", '-m', 'pip', 'install', 'geemap'])"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"metadata": {},
"source": [
"import ee\n",
"import geemap"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an interactive map \n",
"The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. "
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"Map = geemap.Map(center=[40,-100], zoom=4)\n",
"Map"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add Earth Engine Python script "
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"# Add Earth Engine dataset\n",
"# This function gets NDVI from a Landsat 8 image.\n",
"\n",
"\n",
"def addNDVI(image):\n",
" return image.addBands(image.normalizedDifference(['B5', 'B4']))\n",
"\n",
"# This function masks cloudy pixels.\n",
"\n",
"\n",
"def cloudMask(image):\n",
" clouds = ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud'])\n",
" return image.updateMask(clouds.lt(10))\n",
"\n",
"\n",
"# Load a Landsat collection, map the NDVI and cloud masking functions over it.\n",
"collection = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA') \\\n",
" .filterBounds(ee.Geometry.Point([-122.262, 37.8719])) \\\n",
" .filterDate('2014-03-01', '2014-05-31') \\\n",
" .map(addNDVI) \\\n",
" .map(cloudMask)\n",
"\n",
"# Reduce the collection to the mean of each pixel and display.\n",
"meanImage = collection.reduce(ee.Reducer.mean())\n",
"vizParams = {'bands': ['B5_mean', 'B4_mean', 'B3_mean'], 'min': 0, 'max': 0.5}\n",
"Map.setCenter(-122.262, 37.8719, 10)\n",
"Map.addLayer(meanImage, vizParams, 'mean')\n",
"\n",
"# Load a region in which to compute the mean and display it.\n",
"counties = ee.FeatureCollection('TIGER/2016/Counties')\n",
"santaClara = ee.Feature(counties.filter(\n",
" ee.Filter.eq('NAME', 'Santa Clara')).first())\n",
"Map.addLayer(ee.Image().paint(santaClara, 0, 2), {\n",
" 'palette': 'yellow'}, 'Santa Clara')\n",
"\n",
"# Get the mean of NDVI in the region.\n",
"mean = meanImage.select(['nd_mean']).reduceRegion(**{\n",
" 'reducer': ee.Reducer.mean(),\n",
" 'geometry': santaClara.geometry(),\n",
" 'scale': 30\n",
"})\n",
"\n",
"# Print mean NDVI for the region.\n",
"print('Santa Clara spring mean NDVI:', mean.get('nd_mean').getInfo())\n"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Display Earth Engine data layers "
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"Map.addLayerControl() # This line is not needed for ipyleaflet-based Map.\n",
"Map"
],
"outputs": [],
"execution_count": null
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}