Files
earthengine-py-notebooks/Join/inverted_joins.ipynb
2020-12-06 08:43:45 -05:00

154 lines
5.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table class=\"ee-notebook-buttons\" align=\"left\">\n",
" <td><a target=\"_blank\" href=\"https://github.com/giswqs/earthengine-py-notebooks/tree/master/Join/inverted_joins.ipynb\"><img width=32px src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /> View source on GitHub</a></td>\n",
" <td><a target=\"_blank\" href=\"https://nbviewer.jupyter.org/github/giswqs/earthengine-py-notebooks/blob/master/Join/inverted_joins.ipynb\"><img width=26px src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/883px-Jupyter_logo.svg.png\" />Notebook Viewer</a></td>\n",
" <td><a target=\"_blank\" href=\"https://colab.research.google.com/github/giswqs/earthengine-py-notebooks/blob/master/Join/inverted_joins.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /> Run in Google Colab</a></td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install Earth Engine API and geemap\n",
"Install the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://geemap.org). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.\n",
"The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemap#dependencies), including earthengine-api, folium, and ipyleaflet."
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"# Installs geemap package\n",
"import subprocess\n",
"\n",
"try:\n",
" import geemap\n",
"except ImportError:\n",
" print('Installing geemap ...')\n",
" subprocess.check_call([\"python\", '-m', 'pip', 'install', 'geemap'])"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "code",
"metadata": {},
"source": [
"import ee\n",
"import geemap"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an interactive map \n",
"The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. "
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"Map = geemap.Map(center=[40,-100], zoom=4)\n",
"Map"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add Earth Engine Python script "
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"# Add Earth Engine dataset\n",
"# Load a Landsat 8 image collection at a point of interest.\n",
"collection = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA') \\\n",
" .filterBounds(ee.Geometry.Point(-122.09, 37.42))\n",
"\n",
"# Define start and end dates with which to filter the collections.\n",
"april = '2014-04-01'\n",
"may = '2014-05-01'\n",
"june = '2014-06-01'\n",
"july = '2014-07-01'\n",
"\n",
"# The primary collection is Landsat images from April to June.\n",
"primary = collection.filterDate(april, june)\n",
"\n",
"# The secondary collection is Landsat images from May to July.\n",
"secondary = collection.filterDate(may, july)\n",
"\n",
"# Use an equals filter to define how the collections match.\n",
"filter = ee.Filter.equals(**{\n",
" 'leftField': 'system:index',\n",
" 'rightField': 'system:index'\n",
"})\n",
"\n",
"# Define the join.\n",
"invertedJoin = ee.Join.inverted()\n",
"\n",
"# Apply the join.\n",
"invertedJoined = invertedJoin.apply(primary, secondary, filter)\n",
"\n",
"# Display the result.\n",
"print('Inverted join: ', invertedJoined.getInfo())\n",
"\n"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Display Earth Engine data layers "
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"Map.addLayerControl() # This line is not needed for ipyleaflet-based Map.\n",
"Map"
],
"outputs": [],
"execution_count": null
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}