Files
exo/exo/inference/tinygrad/models/llama.py
divinity76 5fe241ec61 code-breaking typo
oops
2025-02-06 19:02:02 +01:00

328 lines
14 KiB
Python

from typing import Tuple, Union, Optional, Dict, Any, List
from tinygrad import Tensor, Variable, TinyJit, dtypes, nn, Device
from tinygrad.helpers import getenv
from collections import OrderedDict
# https://github.com/facebookresearch/llama/blob/1076b9c51c77ad06e9d7ba8a4c6df775741732bd/llama/model.py#L47
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, dtype=dtypes.half, rope_scaling: Optional[Dict[str, float]] = None) -> Tensor:
freqs = 1.0/(theta**(Tensor.arange(0, dim, 2)[:(dim // 2)]/dim))
if rope_scaling:
factor = rope_scaling.get('factor', 1.0)
low_freq_factor = rope_scaling.get('low_freq_factor', 1.0)
high_freq_factor = rope_scaling.get('high_freq_factor', 1.0)
original_max_pos_emb = rope_scaling.get('original_max_position_embeddings', end)
freqs[:dim // 4] *= low_freq_factor
freqs[dim // 4:] = freqs[dim // 4:].contiguous()*high_freq_factor
freqs *= (original_max_pos_emb/end)**(1.0/factor)
freqs = Tensor.arange(end).unsqueeze(dim=1)*freqs.unsqueeze(dim=0)
# TODO: move dtype outside this
return Tensor.stack(freqs.cos().cast(dtype), freqs.sin().cast(dtype), dim=-1).reshape(1, end, 1, dim // 2, 2)
# (a+i*b) * (c+i*d) = (ac-bd) + i*(ad+bc)
def complex_mult(A, c, d):
a, b = A[..., 0:1], A[..., 1:2]
ro = a*c - b*d
co = a*d + b*c
return ro.cat(co, dim=-1)
def apply_rotary_emb(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> Tuple[Tensor, Tensor]:
assert freqs_cis.shape[1] == xq.shape[1] == xk.shape[1], f"freqs_cis shape mismatch {freqs_cis.shape} xq:{xq.shape} xk:{xk.shape}"
xq = xq.reshape(*xq.shape[0:-1], -1, 2)
xk = xk.reshape(*xk.shape[0:-1], -1, 2)
assert len(xq.shape) == len(xk.shape) == len(freqs_cis.shape) == 5
c, d = freqs_cis[..., 0:1], freqs_cis[..., 1:2]
xq_out = complex_mult(xq, c, d)
xk_out = complex_mult(xk, c, d)
return xq_out.flatten(3), xk_out.flatten(3)
def repeat_kv(x: Tensor, n_rep: int) -> Tensor:
bs, seqlen, n_kv_heads, head_dim = x.shape
if n_rep == 1: return x
# NOTE: this is different from x.repeat((1, 1, n_rep, 1))
return x.repeat((1, 1, 1, n_rep)).reshape(bs, seqlen, n_kv_heads*n_rep, head_dim)
class Attention:
def __init__(self, dim, n_heads, n_kv_heads, max_context, linear=nn.Linear):
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads if n_kv_heads is not None else n_heads # n_kv_heads != n_heads implies MQA [arxiv/2307.09288, A.2.1]
self.head_dim = dim // n_heads
self.n_rep = self.n_heads // self.n_kv_heads
self.max_context = max_context
self.wq = linear(dim, self.n_heads*self.head_dim, bias=False)
self.wk = linear(dim, self.n_kv_heads*self.head_dim, bias=False)
self.wv = linear(dim, self.n_kv_heads*self.head_dim, bias=False)
self.wo = linear(self.n_heads*self.head_dim, dim, bias=False)
def __call__(self, x: Tensor, start_pos: Union[Variable, int], freqs_cis: Tensor, mask: Optional[Tensor], cache: Optional[Tensor]=None) -> Tensor:
if getenv("WQKV"):
if not hasattr(self, 'wqkv'): self.wqkv = Tensor.cat(self.wq.weight, self.wk.weight, self.wv.weight)
xqkv = x @ self.wqkv.T
xq, xk, xv = xqkv.split([self.wq.weight.shape[0], self.wk.weight.shape[0], self.wv.weight.shape[0]], dim=2)
else:
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.reshape(xq.shape[0], xq.shape[1], self.n_heads, self.head_dim)
xk = xk.reshape(xk.shape[0], xk.shape[1], self.n_kv_heads, self.head_dim)
xv = xv.reshape(xv.shape[0], xv.shape[1], self.n_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
bsz, seqlen, _, _ = xq.shape
if cache is not None:
# update the cache
assert xk.dtype == xv.dtype == cache.dtype, f"{xk.dtype=}, {xv.dtype=}, {cache.dtype=}"
cache.shrink((None, None, (start_pos, start_pos + seqlen), None, None)).assign(Tensor.stack(xk, xv)).realize()
keys = cache[0].shrink((None, (0, start_pos + seqlen), None, None)) if start_pos > 0 else xk
values = cache[1].shrink((None, (0, start_pos + seqlen), None, None)) if start_pos > 0 else xv
else:
keys = xk
values = xv
keys, values = repeat_kv(keys, self.n_rep), repeat_kv(values, self.n_rep)
xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2)
attn = xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2)
attn = attn.reshape(bsz, seqlen, -1)
return self.wo(attn)
class FeedForward:
def __init__(self, dim: int, hidden_dim: int, linear=nn.Linear):
self.w1 = linear(dim, hidden_dim, bias=False)
self.w2 = linear(hidden_dim, dim, bias=False)
self.w3 = linear(dim, hidden_dim, bias=False) # the gate in Gated Linear Unit
def __call__(self, x: Tensor) -> Tensor:
return self.w2(self.w1(x).silu()*self.w3(x)) # SwiGLU [arxiv/2002.05202, eq (5)]
class TransformerBlock:
def __init__(self, dim: int, hidden_dim: int, n_heads: int, n_kv_heads: int, norm_eps: float, max_context: int, linear=nn.Linear, feed_forward=FeedForward):
self.attention = Attention(dim, n_heads, n_kv_heads, max_context, linear)
self.feed_forward = feed_forward(dim, hidden_dim, linear)
self.attention_norm = nn.RMSNorm(dim, norm_eps)
self.ffn_norm = nn.RMSNorm(dim, norm_eps)
def __call__(self, x: Tensor, start_pos: Union[Variable, int], freqs_cis: Tensor, mask: Optional[Tensor], cache: Optional[Tensor]=None):
h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask, cache=cache)
return (h + self.feed_forward(self.ffn_norm(h))).contiguous()
# standard openai sampling
def sample_logits(logits: Tensor, temp: float, k: int, p: float, af: float, ap: float):
assert logits.ndim == 1, "only works on 1d tensors"
assert 0 <= p <= 1, "p must be between 0 and 1"
assert 0 <= k <= logits.numel(), "k must be between 0 and numel"
# if temperature is very low just use argmax
if temp < 1e-6: return logits.argmax().reshape(1)
# alpha sampling
if af or ap:
if not hasattr(sample, "alpha_counter"):
setattr(sample, "alpha_counter", Tensor.zeros_like(logits, dtype=dtypes.int32).contiguous())
logits = logits - (sample.alpha_counter*af + (sample.alpha_counter > 0)*ap)
# replace NaNs with -inf
logits = (logits != logits).where(-float("inf"), logits)
# softmax
t = (logits/temp).softmax()
counter, counter2 = Tensor.arange(t.numel(), device=logits.device).contiguous(), Tensor.arange(t.numel() - 1, -1, -1, device=logits.device).contiguous()
# top k
if k:
output, output_indices = Tensor.zeros(k, device=logits.device).contiguous(), Tensor.zeros(k, device=logits.device, dtype=dtypes.int32).contiguous()
for i in range(k):
t_argmax = (t.numel() - ((t == (t_max := t.max()))*counter2).max() - 1).cast(dtypes.default_int)
output = output + t_max.unsqueeze(0).pad(((i, k - i - 1),))
output_indices = output_indices + t_argmax.unsqueeze(0).pad(((i, k - i - 1),))
t = (counter == t_argmax).where(0, t)
# approximate top p
# because we are already limited to top k elements we can do top p "without sorting"
output_cumsum = output[::-1]._cumsum()[::-1] + t.sum()
output = (output_cumsum >= (1 - p))*output
output_indices = (output_cumsum >= (1 - p))*output_indices
# sample
output_idx = output.multinomial()
output_token = output_indices[output_idx]
else:
output_token = t.multinomial()
# increase alpha counter
if af or ap:
sample.alpha_counter = (counter == output_token).where(sample.alpha_counter + 1, sample.alpha_counter)
return output_token
from exo.inference.shard import Shard
class Transformer:
def __init__(
self,
dim: int,
hidden_dim: int,
n_heads: int,
n_layers: int,
norm_eps: float,
vocab_size,
shard: Shard = None,
linear=nn.Linear,
n_kv_heads=None,
rope_theta=10000,
max_context=1024,
jit=True,
feed_forward=FeedForward,
rope_scaling: Optional[Dict[str, float]] = None,
tie_word_embeddings=False,
):
self.layers = [TransformerBlock(dim, hidden_dim, n_heads, n_kv_heads, norm_eps, max_context, linear, feed_forward=feed_forward) for _ in range(n_layers)]
self.norm = nn.RMSNorm(dim, norm_eps)
self.tok_embeddings = nn.Embedding(vocab_size, dim)
self.output = nn.Linear(dim, vocab_size, bias=False)
if tie_word_embeddings:
self.output.weight = self.tok_embeddings.weight
self.max_context = max_context
self.freqs_cis = precompute_freqs_cis(dim // n_heads, self.max_context*2, rope_theta, rope_scaling=rope_scaling).contiguous()
self.forward_jit = TinyJit(self.forward_base) if jit else None
self.shard = shard
def forward_base(self, x: Tensor, start_pos: Union[Variable, int], cache: Optional[List[Tensor]] = None):
seqlen = x.shape[1]
freqs_cis = self.freqs_cis.shrink((None, (start_pos, start_pos + seqlen), None, None, None))
mask = Tensor.full((1, 1, seqlen, start_pos + seqlen), float("-100000000"), dtype=x.dtype, device=x.device).triu(start_pos + 1).realize() if seqlen > 1 else None
h = x
if cache is None:
cache = [None for _ in range(self.shard.start_layer, self.shard.end_layer + 1)]
for i, c in zip(range(self.shard.start_layer, self.shard.end_layer + 1), cache):
layer = self.layers[i]
h = layer(h, start_pos, freqs_cis, mask, cache=c)
if self.shard.is_last_layer():
logits = self.output(self.norm(h)).float().realize()
return logits
else:
return h
def embed(self, inputs: Tensor):
if self.shard.is_first_layer():
h = self.tok_embeddings(inputs)
else:
h = inputs
return h
def forward(self, x: Tensor, start_pos: int, cache: Optional[List[Tensor]] = None):
if x.shape[0:2] == (1, 1) and self.forward_jit is not None and start_pos != 0:
return self.forward_jit(x, Variable("start_pos", 1, self.max_context).bind(start_pos), cache=cache)
return self.forward_base(x, start_pos, cache=cache)
def __call__(self, x: Tensor, start_pos: Variable, cache: Optional[List[Tensor]] = None):
# TODO: better way to handle the first call v.s. the rest?
h = self.embed(x)
return self.forward(h, start_pos, cache=cache)
class TransformerShard:
def __init__(
self,
shard: Shard,
base,
jit: bool = True,
):
shardrange = range(shard.start_layer, shard.end_layer + 1)
self.layers = [layer for layer, n in zip(base.layers, range(shard.n_layers)) if n in shardrange]
self.norm = base.norm
self.tok_embeddings = base.tok_embeddings
self.embed = (lambda x: self.tok_embeddings(x)) if shard.is_first_layer() else (lambda x: x)
self.output = base.output
self.post = (lambda x: self.output(x)) if shard.is_last_layer() else (lambda x: x)
self.max_context = base.max_context
self.null_cache = [None for _ in shardrange]
self.freqs_cis = base.freqs_cis
self.forward_jit = TinyJit(self.forward_base) if jit else None
def forward_base(self, x: Tensor, start_pos: Union[Variable, int], cache):
seqlen = x.shape[1]
freqs_cis = self.freqs_cis.shrink((None, (start_pos, start_pos + seqlen), None, None, None))
mask = Tensor.full((1, 1, seqlen, start_pos + seqlen), float("-100000000"), dtype=x.dtype, device=x.device).triu(start_pos + 1).realize() if seqlen > 1 else None
for layer, c in zip(self.layers, cache):
x = layer(x, start_pos, freqs_cis, mask, cache=c)
out = self.post(x)
return out
def forward(self, x: Tensor, start_pos: int, cache: Optional[List[Tensor]] = None):
if x.shape[0:2] == (1, 1) and self.forward_jit is not None and start_pos != 0:
return self.forward_jit(x, Variable("start_pos", 1, self.max_context).bind(start_pos), cache=cache)
return self.forward_base(x, start_pos, cache=cache)
def __call__(self, x: Tensor, start_pos: Variable, cache: Optional[List[Tensor]] = None):
# TODO: better way to handle the first call v.s. the rest?
h = self.embed(x)
return self.forward(h, start_pos, cache=self.null_cache if cache is None else cache)
# *** helpers ***
def convert_from_huggingface(weights: Dict[str, Tensor], model: Transformer, n_heads: int, n_kv_heads: int):
def permute(v: Tensor, n_heads: int):
return v.reshape(n_heads, 2, v.shape[0] // n_heads // 2, v.shape[1]).transpose(1, 2).reshape(*v.shape[:2])
keymap = {
"model.embed_tokens.weight": "tok_embeddings.weight",
**{f"model.layers.{l}.input_layernorm.weight": f"layers.{l}.attention_norm.weight"
for l in range(len(model.layers))},
**{f"model.layers.{l}.self_attn.{x}_proj.weight": f"layers.{l}.attention.w{x}.weight"
for x in ["q", "k", "v", "o"]
for l in range(len(model.layers))},
**{f"model.layers.{l}.post_attention_layernorm.weight": f"layers.{l}.ffn_norm.weight"
for l in range(len(model.layers))},
**{f"model.layers.{l}.mlp.{x}_proj.weight": f"layers.{l}.feed_forward.w{y}.weight"
for x, y in {"gate": "1", "down": "2", "up": "3"}.items()
for l in range(len(model.layers))},
"model.norm.weight": "norm.weight",
"lm_head.weight": "output.weight",
}
sd = {}
for k, v in weights.items():
if ".rotary_emb." in k: continue
v = v.to(Device.DEFAULT)
if "model.layers" in k:
if "q_proj" in k:
v = permute(v, n_heads)
elif "k_proj" in k:
v = permute(v, n_kv_heads)
if k in keymap:
sd[keymap[k]] = v
else:
sd[k] = v
return sd
def fix_bf16(weights: Dict[Any, Tensor]):
if Device.DEFAULT == "CLANG":
# TODO: without casting to float16, 70B llama OOM on tinybox.
return {
k: (v.llvm_bf16_cast(dtypes.float32).to(v.device) if v.dtype == dtypes.bfloat16 else v)
for k, v in weights.items()
}
if getenv("SUPPORT_BF16", 1):
# TODO: without casting to float16, 70B llama OOM on tinybox.
return {k: v.cast(dtypes.float32).cast(dtypes.float16) if v.dtype == dtypes.bfloat16 else v for k, v in weights.items()}
# TODO: check if device supports bf16
return {k: v.llvm_bf16_cast(dtypes.half).to(v.device) if v.dtype == dtypes.bfloat16 else v for k, v in weights.items()}