Files
exo/main.py
2024-08-22 14:05:43 +01:00

199 lines
9.1 KiB
Python

import argparse
import asyncio
import signal
import json
import time
import traceback
import uuid
from asyncio import CancelledError
from exo.orchestration.standard_node import StandardNode
from exo.networking.grpc.grpc_server import GRPCServer
from exo.networking.grpc.grpc_discovery import GRPCDiscovery
from exo.topology.ring_memory_weighted_partitioning_strategy import RingMemoryWeightedPartitioningStrategy
from exo.api import ChatGPTAPI
from exo.download.shard_download import ShardDownloader, RepoProgressEvent
from exo.download.hf.hf_shard_download import HFShardDownloader
from exo.helpers import print_yellow_exo, find_available_port, DEBUG, get_system_info, get_or_create_node_id, get_all_ip_addresses, terminal_link
from exo.inference.shard import Shard
from exo.inference.inference_engine import get_inference_engine, InferenceEngine
from exo.inference.tokenizers import resolve_tokenizer
from exo.orchestration.node import Node
from exo.models import model_base_shards
from exo.viz.topology_viz import TopologyViz
# parse args
parser = argparse.ArgumentParser(description="Initialize GRPC Discovery")
parser.add_argument("--node-id", type=str, default=None, help="Node ID")
parser.add_argument("--node-host", type=str, default="0.0.0.0", help="Node host")
parser.add_argument("--node-port", type=int, default=None, help="Node port")
parser.add_argument("--listen-port", type=int, default=5678, help="Listening port for discovery")
parser.add_argument("--download-quick-check", action="store_true", help="Quick check local path for model shards download")
parser.add_argument("--max-parallel-downloads", type=int, default=4, help="Max parallel downloads for model shards download")
parser.add_argument("--prometheus-client-port", type=int, default=None, help="Prometheus client port")
parser.add_argument("--broadcast-port", type=int, default=5678, help="Broadcast port for discovery")
parser.add_argument("--discovery-timeout", type=int, default=30, help="Discovery timeout in seconds")
parser.add_argument("--wait-for-peers", type=int, default=0, help="Number of peers to wait to connect to before starting")
parser.add_argument("--chatgpt-api-port", type=int, default=8000, help="ChatGPT API port")
parser.add_argument("--chatgpt-api-response-timeout-secs", type=int, default=90, help="ChatGPT API response timeout in seconds")
parser.add_argument("--max-generate-tokens", type=int, default=1024, help="Max tokens to generate in each request")
parser.add_argument("--inference-engine", type=str, default=None, help="Inference engine to use")
parser.add_argument("--disable-tui", action=argparse.BooleanOptionalAction, help="Disable TUI")
parser.add_argument("--run-model", type=str, help="Specify a model to run directly")
parser.add_argument("--prompt", type=str, help="Prompt for the model when using --run-model", default="Who are you?")
args = parser.parse_args()
print_yellow_exo()
system_info = get_system_info()
print(f"Detected system: {system_info}")
shard_downloader: ShardDownloader = HFShardDownloader(quick_check=args.download_quick_check, max_parallel_downloads=args.max_parallel_downloads)
inference_engine_name = args.inference_engine or ("mlx" if system_info == "Apple Silicon Mac" else "tinygrad")
inference_engine = get_inference_engine(inference_engine_name, shard_downloader)
print(f"Using inference engine: {inference_engine.__class__.__name__} with shard downloader: {shard_downloader.__class__.__name__}")
if args.node_port is None:
args.node_port = find_available_port(args.node_host)
if DEBUG >= 1: print(f"Using available port: {args.node_port}")
args.node_id = args.node_id or get_or_create_node_id()
discovery = GRPCDiscovery(args.node_id, args.node_port, args.listen_port, args.broadcast_port, discovery_timeout=args.discovery_timeout)
chatgpt_api_endpoints = [f"http://{ip}:{args.chatgpt_api_port}/v1/chat/completions" for ip in get_all_ip_addresses()]
web_chat_urls = [f"http://{ip}:{args.chatgpt_api_port}" for ip in get_all_ip_addresses()]
if DEBUG >= 0:
print("Chat interface started:")
for web_chat_url in web_chat_urls:
print(f" - {terminal_link(web_chat_url)}")
print("ChatGPT API endpoint served at:")
for chatgpt_api_endpoint in chatgpt_api_endpoints:
print(f" - {terminal_link(chatgpt_api_endpoint)}")
topology_viz = TopologyViz(chatgpt_api_endpoints=chatgpt_api_endpoints, web_chat_urls=web_chat_urls) if not args.disable_tui else None
node = StandardNode(
args.node_id,
None,
inference_engine,
discovery,
chatgpt_api_endpoints=chatgpt_api_endpoints,
web_chat_urls=web_chat_urls,
partitioning_strategy=RingMemoryWeightedPartitioningStrategy(),
disable_tui=args.disable_tui,
max_generate_tokens=args.max_generate_tokens,
topology_viz=topology_viz
)
server = GRPCServer(node, args.node_host, args.node_port)
node.server = server
api = ChatGPTAPI(
node,
inference_engine.__class__.__name__,
response_timeout_secs=args.chatgpt_api_response_timeout_secs,
on_chat_completion_request=lambda req_id, __, prompt: topology_viz.update_prompt(req_id, prompt) if topology_viz else None
)
node.on_token.register("update_topology_viz").on_next(
lambda req_id, tokens, __: topology_viz.update_prompt_output(req_id,
inference_engine.tokenizer.decode(tokens) if hasattr(inference_engine, "tokenizer") else tokens) if topology_viz else None
)
def preemptively_start_download(request_id: str, opaque_status: str):
try:
status = json.loads(opaque_status)
if status.get("type") == "node_status" and status.get("status") == "start_process_prompt":
current_shard = node.get_current_shard(Shard.from_dict(status.get("shard")))
if DEBUG >= 2: print(f"Preemptively starting download for {current_shard}")
asyncio.create_task(shard_downloader.ensure_shard(current_shard))
except Exception as e:
if DEBUG >= 2:
print(f"Failed to preemptively start download: {e}")
traceback.print_exc()
node.on_opaque_status.register("start_download").on_next(preemptively_start_download)
if args.prometheus_client_port:
from exo.stats.metrics import start_metrics_server
start_metrics_server(node, args.prometheus_client_port)
last_broadcast_time = 0
def throttled_broadcast(shard: Shard, event: RepoProgressEvent):
global last_broadcast_time
current_time = time.time()
if event.status == "complete" or current_time - last_broadcast_time >= 0.1:
last_broadcast_time = current_time
asyncio.create_task(node.broadcast_opaque_status("", json.dumps({"type": "download_progress", "node_id": node.id, "progress": event.to_dict()})))
shard_downloader.on_progress.register("broadcast").on_next(throttled_broadcast)
async def shutdown(signal, loop):
"""Gracefully shutdown the server and close the asyncio loop."""
print(f"Received exit signal {signal.name}...")
print("Thank you for using exo.")
print_yellow_exo()
server_tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]
[task.cancel() for task in server_tasks]
print(f"Cancelling {len(server_tasks)} outstanding tasks")
await asyncio.gather(*server_tasks, return_exceptions=True)
await server.stop()
loop.stop()
async def run_model_cli(node: Node, inference_engine: InferenceEngine, model_name: str, prompt: str):
shard = model_base_shards.get(model_name, {}).get(inference_engine.__class__.__name__)
if not shard:
print(f"Error: Unsupported model '{model_name}' for inference engine {inference_engine.__class__.__name__}")
return
tokenizer = await resolve_tokenizer(shard.model_id)
request_id = str(uuid.uuid4())
callback_id = f"cli-wait-response-{request_id}"
callback = node.on_token.register(callback_id)
if topology_viz:
topology_viz.update_prompt(request_id, prompt)
prompt = tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
try:
print(f"Processing prompt: {prompt}")
await node.process_prompt(shard, prompt, None, request_id=request_id)
_, tokens, _ = await callback.wait(lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished, timeout=300)
print("\nGenerated response:")
print(tokenizer.decode(tokens))
except Exception as e:
print(f"Error processing prompt: {str(e)}")
traceback.print_exc()
finally:
node.on_token.deregister(callback_id)
async def main():
loop = asyncio.get_running_loop()
# Use a more direct approach to handle signals
def handle_exit():
asyncio.ensure_future(shutdown(signal.SIGTERM, loop))
for s in [signal.SIGINT, signal.SIGTERM]:
loop.add_signal_handler(s, handle_exit)
await node.start(wait_for_peers=args.wait_for_peers)
if args.run_model:
await run_model_cli(node, inference_engine, args.run_model, args.prompt)
else:
asyncio.create_task(api.run(port=args.chatgpt_api_port)) # Start the API server as a non-blocking task
await asyncio.Event().wait()
if __name__ == "__main__":
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
loop.run_until_complete(main())
except KeyboardInterrupt:
print("Received keyboard interrupt. Shutting down...")
finally:
loop.run_until_complete(shutdown(signal.SIGTERM, loop))
loop.close()