mirror of
https://github.com/exo-explore/exo.git
synced 2025-10-23 02:57:14 +03:00
199 lines
9.1 KiB
Python
199 lines
9.1 KiB
Python
import argparse
|
|
import asyncio
|
|
import signal
|
|
import json
|
|
import time
|
|
import traceback
|
|
import uuid
|
|
from asyncio import CancelledError
|
|
from exo.orchestration.standard_node import StandardNode
|
|
from exo.networking.grpc.grpc_server import GRPCServer
|
|
from exo.networking.grpc.grpc_discovery import GRPCDiscovery
|
|
from exo.topology.ring_memory_weighted_partitioning_strategy import RingMemoryWeightedPartitioningStrategy
|
|
from exo.api import ChatGPTAPI
|
|
from exo.download.shard_download import ShardDownloader, RepoProgressEvent
|
|
from exo.download.hf.hf_shard_download import HFShardDownloader
|
|
from exo.helpers import print_yellow_exo, find_available_port, DEBUG, get_system_info, get_or_create_node_id, get_all_ip_addresses, terminal_link
|
|
from exo.inference.shard import Shard
|
|
from exo.inference.inference_engine import get_inference_engine, InferenceEngine
|
|
from exo.inference.tokenizers import resolve_tokenizer
|
|
from exo.orchestration.node import Node
|
|
from exo.models import model_base_shards
|
|
from exo.viz.topology_viz import TopologyViz
|
|
|
|
# parse args
|
|
parser = argparse.ArgumentParser(description="Initialize GRPC Discovery")
|
|
parser.add_argument("--node-id", type=str, default=None, help="Node ID")
|
|
parser.add_argument("--node-host", type=str, default="0.0.0.0", help="Node host")
|
|
parser.add_argument("--node-port", type=int, default=None, help="Node port")
|
|
parser.add_argument("--listen-port", type=int, default=5678, help="Listening port for discovery")
|
|
parser.add_argument("--download-quick-check", action="store_true", help="Quick check local path for model shards download")
|
|
parser.add_argument("--max-parallel-downloads", type=int, default=4, help="Max parallel downloads for model shards download")
|
|
parser.add_argument("--prometheus-client-port", type=int, default=None, help="Prometheus client port")
|
|
parser.add_argument("--broadcast-port", type=int, default=5678, help="Broadcast port for discovery")
|
|
parser.add_argument("--discovery-timeout", type=int, default=30, help="Discovery timeout in seconds")
|
|
parser.add_argument("--wait-for-peers", type=int, default=0, help="Number of peers to wait to connect to before starting")
|
|
parser.add_argument("--chatgpt-api-port", type=int, default=8000, help="ChatGPT API port")
|
|
parser.add_argument("--chatgpt-api-response-timeout-secs", type=int, default=90, help="ChatGPT API response timeout in seconds")
|
|
parser.add_argument("--max-generate-tokens", type=int, default=1024, help="Max tokens to generate in each request")
|
|
parser.add_argument("--inference-engine", type=str, default=None, help="Inference engine to use")
|
|
parser.add_argument("--disable-tui", action=argparse.BooleanOptionalAction, help="Disable TUI")
|
|
parser.add_argument("--run-model", type=str, help="Specify a model to run directly")
|
|
parser.add_argument("--prompt", type=str, help="Prompt for the model when using --run-model", default="Who are you?")
|
|
args = parser.parse_args()
|
|
|
|
print_yellow_exo()
|
|
|
|
system_info = get_system_info()
|
|
print(f"Detected system: {system_info}")
|
|
|
|
shard_downloader: ShardDownloader = HFShardDownloader(quick_check=args.download_quick_check, max_parallel_downloads=args.max_parallel_downloads)
|
|
inference_engine_name = args.inference_engine or ("mlx" if system_info == "Apple Silicon Mac" else "tinygrad")
|
|
inference_engine = get_inference_engine(inference_engine_name, shard_downloader)
|
|
print(f"Using inference engine: {inference_engine.__class__.__name__} with shard downloader: {shard_downloader.__class__.__name__}")
|
|
|
|
if args.node_port is None:
|
|
args.node_port = find_available_port(args.node_host)
|
|
if DEBUG >= 1: print(f"Using available port: {args.node_port}")
|
|
|
|
args.node_id = args.node_id or get_or_create_node_id()
|
|
discovery = GRPCDiscovery(args.node_id, args.node_port, args.listen_port, args.broadcast_port, discovery_timeout=args.discovery_timeout)
|
|
chatgpt_api_endpoints = [f"http://{ip}:{args.chatgpt_api_port}/v1/chat/completions" for ip in get_all_ip_addresses()]
|
|
web_chat_urls = [f"http://{ip}:{args.chatgpt_api_port}" for ip in get_all_ip_addresses()]
|
|
if DEBUG >= 0:
|
|
print("Chat interface started:")
|
|
for web_chat_url in web_chat_urls:
|
|
print(f" - {terminal_link(web_chat_url)}")
|
|
print("ChatGPT API endpoint served at:")
|
|
for chatgpt_api_endpoint in chatgpt_api_endpoints:
|
|
print(f" - {terminal_link(chatgpt_api_endpoint)}")
|
|
topology_viz = TopologyViz(chatgpt_api_endpoints=chatgpt_api_endpoints, web_chat_urls=web_chat_urls) if not args.disable_tui else None
|
|
node = StandardNode(
|
|
args.node_id,
|
|
None,
|
|
inference_engine,
|
|
discovery,
|
|
chatgpt_api_endpoints=chatgpt_api_endpoints,
|
|
web_chat_urls=web_chat_urls,
|
|
partitioning_strategy=RingMemoryWeightedPartitioningStrategy(),
|
|
disable_tui=args.disable_tui,
|
|
max_generate_tokens=args.max_generate_tokens,
|
|
topology_viz=topology_viz
|
|
)
|
|
server = GRPCServer(node, args.node_host, args.node_port)
|
|
node.server = server
|
|
api = ChatGPTAPI(
|
|
node,
|
|
inference_engine.__class__.__name__,
|
|
response_timeout_secs=args.chatgpt_api_response_timeout_secs,
|
|
on_chat_completion_request=lambda req_id, __, prompt: topology_viz.update_prompt(req_id, prompt) if topology_viz else None
|
|
)
|
|
node.on_token.register("update_topology_viz").on_next(
|
|
lambda req_id, tokens, __: topology_viz.update_prompt_output(req_id,
|
|
inference_engine.tokenizer.decode(tokens) if hasattr(inference_engine, "tokenizer") else tokens) if topology_viz else None
|
|
)
|
|
|
|
|
|
def preemptively_start_download(request_id: str, opaque_status: str):
|
|
try:
|
|
status = json.loads(opaque_status)
|
|
if status.get("type") == "node_status" and status.get("status") == "start_process_prompt":
|
|
current_shard = node.get_current_shard(Shard.from_dict(status.get("shard")))
|
|
if DEBUG >= 2: print(f"Preemptively starting download for {current_shard}")
|
|
asyncio.create_task(shard_downloader.ensure_shard(current_shard))
|
|
except Exception as e:
|
|
if DEBUG >= 2:
|
|
print(f"Failed to preemptively start download: {e}")
|
|
traceback.print_exc()
|
|
|
|
|
|
node.on_opaque_status.register("start_download").on_next(preemptively_start_download)
|
|
if args.prometheus_client_port:
|
|
from exo.stats.metrics import start_metrics_server
|
|
start_metrics_server(node, args.prometheus_client_port)
|
|
|
|
last_broadcast_time = 0
|
|
|
|
|
|
def throttled_broadcast(shard: Shard, event: RepoProgressEvent):
|
|
global last_broadcast_time
|
|
current_time = time.time()
|
|
if event.status == "complete" or current_time - last_broadcast_time >= 0.1:
|
|
last_broadcast_time = current_time
|
|
asyncio.create_task(node.broadcast_opaque_status("", json.dumps({"type": "download_progress", "node_id": node.id, "progress": event.to_dict()})))
|
|
|
|
|
|
shard_downloader.on_progress.register("broadcast").on_next(throttled_broadcast)
|
|
|
|
|
|
async def shutdown(signal, loop):
|
|
"""Gracefully shutdown the server and close the asyncio loop."""
|
|
print(f"Received exit signal {signal.name}...")
|
|
print("Thank you for using exo.")
|
|
print_yellow_exo()
|
|
server_tasks = [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]
|
|
[task.cancel() for task in server_tasks]
|
|
print(f"Cancelling {len(server_tasks)} outstanding tasks")
|
|
await asyncio.gather(*server_tasks, return_exceptions=True)
|
|
await server.stop()
|
|
loop.stop()
|
|
|
|
|
|
async def run_model_cli(node: Node, inference_engine: InferenceEngine, model_name: str, prompt: str):
|
|
shard = model_base_shards.get(model_name, {}).get(inference_engine.__class__.__name__)
|
|
if not shard:
|
|
print(f"Error: Unsupported model '{model_name}' for inference engine {inference_engine.__class__.__name__}")
|
|
return
|
|
tokenizer = await resolve_tokenizer(shard.model_id)
|
|
request_id = str(uuid.uuid4())
|
|
callback_id = f"cli-wait-response-{request_id}"
|
|
callback = node.on_token.register(callback_id)
|
|
if topology_viz:
|
|
topology_viz.update_prompt(request_id, prompt)
|
|
prompt = tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
|
|
|
|
try:
|
|
print(f"Processing prompt: {prompt}")
|
|
await node.process_prompt(shard, prompt, None, request_id=request_id)
|
|
|
|
_, tokens, _ = await callback.wait(lambda _request_id, tokens, is_finished: _request_id == request_id and is_finished, timeout=300)
|
|
|
|
print("\nGenerated response:")
|
|
print(tokenizer.decode(tokens))
|
|
except Exception as e:
|
|
print(f"Error processing prompt: {str(e)}")
|
|
traceback.print_exc()
|
|
finally:
|
|
node.on_token.deregister(callback_id)
|
|
|
|
|
|
async def main():
|
|
loop = asyncio.get_running_loop()
|
|
|
|
# Use a more direct approach to handle signals
|
|
def handle_exit():
|
|
asyncio.ensure_future(shutdown(signal.SIGTERM, loop))
|
|
|
|
for s in [signal.SIGINT, signal.SIGTERM]:
|
|
loop.add_signal_handler(s, handle_exit)
|
|
|
|
await node.start(wait_for_peers=args.wait_for_peers)
|
|
|
|
if args.run_model:
|
|
await run_model_cli(node, inference_engine, args.run_model, args.prompt)
|
|
else:
|
|
asyncio.create_task(api.run(port=args.chatgpt_api_port)) # Start the API server as a non-blocking task
|
|
await asyncio.Event().wait()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
try:
|
|
loop.run_until_complete(main())
|
|
except KeyboardInterrupt:
|
|
print("Received keyboard interrupt. Shutting down...")
|
|
finally:
|
|
loop.run_until_complete(shutdown(signal.SIGTERM, loop))
|
|
loop.close()
|