Files
flux-webui/app.py
cocktailpeanut f8ac21c51f update
2024-08-07 11:05:10 -04:00

122 lines
4.3 KiB
Python

import gradio as gr
import numpy as np
import random
import torch
from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
import devicetorch
dtype = torch.bfloat16
device = devicetorch.get(torch)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
selected = None
css="""
nav {
text-align: center;
}
#logo{
width: 50px;
display: inline;
}
"""
def infer(prompt, checkpoint="black-forest-labs/FLUX.1-schnell", seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
global pipe
global selected
# if the new checkpoint is different from the selected one, re-instantiate the pipe
if selected != checkpoint:
if checkpoint == "sayakpaul/FLUX.1-merged":
transformer = FluxTransformer2DModel.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=dtype)
pipe = FluxPipeline.from_pretrained("cocktailpeanut/xulf-d", transformer=transformer, torch_dtype=dtype)
else:
#transformer = FluxTransformer2DModel.from_single_file("https://huggingface.co/Kijai/flux-fp8/blob/main/flux1-schnell-fp8.safetensors")
#pipe = FluxPipeline.from_pretrained(checkpoint, transformer=transformer, torch_dtype=torch.bfloat16)
pipe = FluxPipeline.from_pretrained(checkpoint, torch_dtype=dtype)
pipe.to(device)
pipe.enable_attention_slicing()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
if device == "cuda":
#pipe.enable_model_cpu_offload()
pipe.enable_sequential_cpu_offload()
selected = checkpoint
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
width = width,
height = height,
num_inference_steps = num_inference_steps,
generator = generator,
guidance_scale=0.0
).images[0]
devicetorch.empty_cache(torch)
return image, seed
def update_slider(checkpoint, num_inference_steps):
if checkpoint == "sayakpaul/FLUX.1-merged":
return 8
else:
return 4
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("<nav><img id='logo' src='file/icon.png'/></nav>")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings"):
checkpoint = gr.Dropdown(
value= "black-forest-labs/FLUX.1-schnell",
choices=[
"black-forest-labs/FLUX.1-schnell",
"sayakpaul/FLUX.1-merged"
]
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=576,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
checkpoint.change(fn=update_slider, inputs=[checkpoint], outputs=[num_inference_steps])
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, checkpoint, seed, randomize_seed, width, height, num_inference_steps],
outputs = [result, seed]
)
demo.launch()